▍1. social-lstm-tf-master
social lstm tensorflow
内附机器学习常用模型的python代码!(Enclosing machine learning commonly used model of Python code!)
此代码是OS-ELM在线极限学习机,内含训练集和测试集。(This code is the OS-ELM online extreme learning machine, containing training set and test set.)
基于tensorflow的简单神经网络代码实现(Implementation of simple neural network code based on tensorflow)
机器学习西瓜书(周志华) 机器学习入门者的优秀参考中文教材(Machine learning watermelon book (Zhou Zhihua) introductory excellent teaching materials)
迁移学习 领域适应性 机器学习 学习代码(Transfer learning Domain Adaptation Machine Learning Coding study Inductive Learning Transductive Learning)
基于python的DBN实现,可以用来数据降维。(Implementation of DBN based on Python)
遗传算法源代码,遗传算法源代码,遗传算法源代码( U9057 u4F20 u7B97 u6CD5 u6E90 u4EE3 )
一个小demo,用softmax实现数据分类,数据有4类,均服从高斯分布(A small demo, a classifier with softmax softmax is implemented to classify 4 classes of datas which are generated by gaussian distribution )
深度学习中有关自编码器的一些代码,需要安装Keras(some autoencoder models wrote in python )
机器学习中基于社区网络的用户情绪识别算法,里面有23个文件,包含基于社区网络的用户情绪识别算法Python实现代码以及测试数据集。(Machine learning algorithm based on user emotion recognition of community networks, there are 23 file that contains the user' s emotion recognition algorithm based on community networks Python implementation code and test data sets.)
神经网络算法,股票 开盘 收盘 最高 最低 预测股票的趋势(Neural network algorithm, the stock closed the highest and lowest forecast stock trend)
用于机器学习的全方位python代码,包括K-近邻算法、决策树、朴素贝叶斯、Logistic 回归 、支持向量机、利用 AdaBoost 元算法提高分类性能、预测数值型数据:回归、树回归、利用 K-均值聚类算法对未标注数据分组、使用 Apriori 算法进行关联分析、使用 FP-growth 算法来高效分析频繁项集、利用 PCA 来简化数据、利用 SVD 简化数据、大数据与 MapReduce(The full range of python code for machine learning. Including K-Nearest Neighbor Algorithm, Decision Tree, Naive Bayes, Logistic Regression, Support Vector Machine, AdaBoost Meta-algorithm to improve the classification performance,etc)
Scrapy框架下实现的爬取百度招聘上所有相关招聘信息的爬虫,有效的对爬下来的数据以合适的格式进行储存。后续可进行数据挖掘。(Under the framework of realization Scrapy crawling reptiles Baidu recruitment on all jobs, effective to climb down data stored in a suitable format. Follow-up for data mining.)
《Python机器学习及实践:从零开始通往Kaggle竞赛之路》源码,提供了一些流行的机器学习框架与程序库的应用实例,包括tensorflow框架,注重实战。(Python machine learning and practice: zero to the road leading to the Kaggle contest source code, provides some popular machine learning framework and application examples, including the tensorflow framework, focusing on actual combat.)
多层前向卷积神经网络Python代码。Theano的CNN代码(CNN,Convolutional Neural Network,multiple feedback convolution neural cetwork,Python code)
用python实现了隐马尔科夫模型的概率计算和预测部分,主要是前向后向算法和维特比算法(Realized with python hidden Markov model probability calculation and prediction part is mainly forward-backward algorithm and the Viterbi algorithm)
调用NAO机器人关节参数,具体请自己使用choregraphe学习,(jdua isand askdih )
Python 机器学习与实战 第三章 决策树分类问题(Python Machine Learning and practical decision tree classification Chapter III)