▍1. 深度学习入门:基于Python的理论与实现(源码)
说明: 基于Python的有关深度学习的入门级的参考原码,有助于学习深度学习。(Python-based reference codes for entry-level in-depth learning are helpful for in-depth learning.)
说明: 基于Python的有关深度学习的入门级的参考原码,有助于学习深度学习。(Python-based reference codes for entry-level in-depth learning are helpful for in-depth learning.)
径向基网络BP network and RBF radial basis function network contrast (fool tutorial, 10 seconds learning neural network). pdf(BP network and RBF radial basis function network contrast (fool tutorial, 10 seconds learning neural network). pdf)
说明: 径向基网络BP network and RBF radial basis function network contrast (fool tutorial, 10 seconds learning neural network). pdf(BP network and RBF radial basis function network contrast (fool tutorial, 10 seconds learning neural network). pdf)
基于python socket和tkinter界面库实现的网络聊天室程序,实现登录、注册、在线成员显示、聊天等功能
第1章 赋予计算机学习数据的能力 1.1 构建智能机器将数据转化为知识 1.2 机器学习的三种不同方法 1.2.1 通过监督学习对未来事件进行预测 1.2.2 通过强化学习解决交互式问题 1.2.3 通过无监督学习发现数据本身潜在的结构 1.2.4 基本术语及符号介绍 1.3 构建机器学习系统的蓝图(Chapter 1 Enables Computers to Learn Data 1.1 Building Intelligent Machines to Transform Data into Knowledge 1.2 Three Different Methods of Machine Learning 1.2.1 Prediction of future events through supervised learning 1.2.2 Solving Interactive Problems through Reinforcement Learning 1.2.3 Discovering the Potential Structure of Data by Unsupervised Learning 1.2.4 Introduction of Basic Terminology and Symbols 1.3 Blueprint for Building Machine Learning System)
说明: 第1章 赋予计算机学习数据的能力 1.1 构建智能机器将数据转化为知识 1.2 机器学习的三种不同方法 1.2.1 通过监督学习对未来事件进行预测 1.2.2 通过强化学习解决交互式问题 1.2.3 通过无监督学习发现数据本身潜在的结构 1.2.4 基本术语及符号介绍 1.3 构建机器学习系统的蓝图(Chapter 1 Enables Computers to Learn Data 1.1 Building Intelligent Machines to Transform Data into Knowledge 1.2 Three Different Methods of Machine Learning 1.2.1 Prediction of future events through supervised learning 1.2.2 Solving Interactive Problems through Reinforcement Learning 1.2.3 Discovering the Potential Structure of Data by Unsupervised Learning 1.2.4 Introduction of Basic Terminology and Symbols 1.3 Blueprint for Building Machine Learning System)
说明: 用LDA对英文语料库提取n个主题,并输出每条文章属于哪个主题: 1)对英文评论数据进行预处理:分词、词性标注、去掉停用词和垃圾字符串 2)仅保留名词、形容词和动词 3) 将每条评论处理成TF-IDF向量表示,去掉频率为后2%的词语言 4)拟合LDA模型 5)提取n个主题,输出每个主题下包含哪些关键词(按重要程度排序) 6)对每条评论,给出其属于哪个主题(以及属于每个主题的概率) 7)统计每个主题下有多少条评论 依赖: python3, NLTK, enchant, sklearn, numpy, pickle等,详细见代码 数据集:80,000+英文评论 输出结果: topic #1: view night river light building nice walk day beautiful skyline visit evening amazing spectacular stroll time floor architecture people amaze modern top enjoy cruise look photo fantastic skyscraper awesome picture topic #2: garden bike nice beautiful visit peaceful ride chinese walk ancient temple town time rent cycle gate china history bicycle building middle hour oasis quiet busy look enjoy hire lot architecture topic #3: ...(An LDA topic model for review topic classification. Able to extract n topics from 80,000 English reviews or articles. Implmented by Python3, with packages such as NLTK, enchant, sklearn, numpy, pickleand so on.)
神经网络与深度学习教科书————复旦大学邱锡鹏(Neural Network and Deep Learning Textbook)
说明: 神经网络与深度学习教科书————复旦大学邱锡鹏(Neural Network and Deep Learning Textbook)
这是一个网格世界的编程 是python版本 希望对大家有帮助(it is grid world python.)
说明: 这是一个网格世界的编程 是python版本 希望对大家有帮助(it is grid world python.)
说明: q-learning算法的python版本(it is version of python for q-learning algorithm)
Caffee框架下实现Faster R-CNN ,backbone为vgg(Faster R-CNN is implemented under Caffee framework, and backbone is VGG)
说明: Caffee框架下实现Faster R-CNN ,backbone为vgg(Faster R-CNN is implemented under Caffee framework, and backbone is VGG)
说明: 统计学习书籍和代码,非常非常好的资料,你可以下载的学习。(Machine learning actual supporting code, very very good information, you can download the learning.)
说明: DBN源码(DBN source code)
运用python成为顶级黑客,讲解运用python进行网站攻击与漏洞利用(Use Python to become a top hacker, explain how to use Python to attack website and exploit vulnerabilities)
说明: 运用python成为顶级黑客,讲解运用python进行网站攻击与漏洞利用(Use Python to become a top hacker, explain how to use Python to attack website and exploit vulnerabilities)