登录

最新会员 最新下载

成为了本站VIP会员

01月05日 00:38

成为了本站VIP会员

2024-12-25 15:38

成为了本站VIP会员

2024-12-25 12:28

成为了本站VIP会员

2024-12-25 12:10

成为了本站VIP会员

2024-12-24 23:54

成为了本站VIP会员

2024-12-24 23:29
已选条件
  1. 编程语言:Python
  2. 代码类别:网络
  3. 发布时间:不限
全部撤销
编程语言 更多 收起
代码类别 更多 收起
发布时间
更多选项

1. CBAM_keras_model

说明:  注意力机制使用;卷积神经网络的变体keras实现(Use of attention mechanisms; Implementation of kerAS, a variant of the convolutional neural network)

2
下载
134
浏览
2020-10-06发布

2. Perceptron_Neural_Network

说明:  人工神经网络算法,可用于参考进行机器学习研究。(Neural network, and machine learning)

3
下载
80
浏览
2020-10-06发布

3. Linear

说明:  线性回归算法,可进行机器学习方面的参考学习。(linear regression, machine learning)

1
下载
74
浏览
2020-10-06发布

4. AdaBoost

说明:  adaboost python代码实现,且附有常用机器学习指标检测代码(code and data of adaboost algorithm , can be run directly)

2
下载
83
浏览
2020-09-27发布

5. knn

说明:  KNN的四种实现代码与数据,可直接运行....(code and data of knn algorithm , can be run directly)

1
下载
104
浏览
2020-09-27发布

6. voronoi_3d

  ABAQUS 插件 vornoi,源码 看文件下载(A voronoi plugin for abaqus)

111
下载
190
浏览
2020-09-22发布

7. tensorflow_CNN

  使用tensorflow实现CNN 模型(implement CNN model using tensorflow)

70
下载
75
浏览
2020-09-22发布

8. realtime-action-detection-master

  基于UCF101数据集的识别,与实时动作定位(realtime-action-detection)

1
下载
49
浏览
2020-09-20发布

9. realtime-action-detection-master

说明:  基于UCF101数据集的识别,与实时动作定位(realtime-action-detection)

2
下载
78
浏览
2020-09-20发布

10. regression

  机器学习算法,预测数值型回归,岭回归和逐步线性回归(Machine learning algorithms to predict numerical regression, ridge regression and stepwise linear regression)

41
下载
78
浏览
2020-09-18发布

11. tensorflow-fcn-master

说明:  卷积网络正在推动着图像识别方面的进步,其不仅改进了整体图像的分类效果,而且在具有结构化输出的局部任务上也取得了进步,包括边界框目标检测,关键点预测等。 自然下一步是改进在像素级别上的预测。其实,以前的方法已经使用卷积网络进行语义分割任务,其中每个像素都被标记为属于目标或属于其他区域,但让具有缺点。 FCN和CNN的区别:CNN卷积层之后连接的是全连接层;FCN卷积层之后仍连接卷积层,输出的是与输入大小相同的特征图,提出一个端到端,像素对像素的全卷积网络用于语义分割任务(Convolution network is promoting the progress of image recognition. It not only improves the classification effect of the whole image, but also makes progress in the local tasks with structured output, including boundary box target detection, key point prediction and so on. The natural next step is to improve prediction at the pixel level. In fact, previous methods have used convolutional networks for semantic segmentation tasks, in which each pixel is marked as belonging to the target or other regions, but it has disadvantages. The difference between FCN and CNN: CNN convolution layer is connected with full connection layer after CNN convolution layer; FCN convolution layer is still connected with convolution layer after FCN convolution layer, and the output is the same as the input size of feature map. An end-to-end, pixel to pixel full convolution network is proposed for semantic segmentation task)

4
下载
123
浏览
2020-09-18发布

12. Python for Data Analysis, 2nd Edition

  python数据处理,利用pandas进行数据分析的教程(python data analysis)

12
下载
112
浏览
2020-09-17发布

13. TensorFlow Code

说明:  Tensorflow深度学习书籍所有案例代码实现的源码,服从开源协议(Tensorflow book source code)

4
下载
117
浏览
2020-09-16发布

14. 第5章

说明:  在许多情况下,利用深度学习算法搭建的神经网络模型都需妥进行某 种形式的优化。 这非常重要,只有经过优化的网络,才能在训练之后达到 不错的解决问题的效果。 优化的最直接目的就是使参数更加准确地更新。 一般神经网络的训练过程大致可以分为两个阶段:第一个阶段先通过 前向传播算法计算得到预测值,并将预测值和真实值做对比,得出两者之 间的差距;在第二个阶段,通过反向传播算法计算损失函数对每一个参数 的梯度,再根据梯度和学习率使用梯度下降算法更新每一个参数。(In many cases, the neural network model built by deep learning algorithm needs to be optimized in some form. This is very important, only after the optimization of the network, in order to achieve good results in solving problems after training. The most direct purpose of optimization is to update parameters more accurately. The training process of general neural network can be roughly divided into two stages: in the first stage, the predicted value is calculated by the forward propagation algorithm, and the difference between the predicted value and the real value is obtained; in the second stage, the loss function is calculated by the back-propagation algorithm for each parameter According to the gradient and learning rate, the gradient descent algorithm is used to update each parameter.)

1
下载
70
浏览
2020-09-14发布

15. bp神经

说明:  对minist数据集进行手写体数字识别,得到识别率、训练时间和单个测试的输入输出。(The recognition rate, training time and the input and output of a single test are obtained.)

4
下载
95
浏览
2020-09-09发布

16. MTCNN-Tensorflow-master

说明:  人脸识别MTCNN模型,高效识别人脸,工程全代码(Mtcnn model for face recognition)

1
下载
62
浏览
2020-09-03发布

17. lstm

  实现一多维时序数据的预测,相关参数可自行修改(Realization of prediction of multidimensional time series data)

28
下载
149
浏览
2020-09-01发布

18. tensorflow-Tree-CNN-master

  cifar-10分类,使用cnn卷积神经网络实现(Cifar-10 classification)

11
下载
71
浏览
2020-09-01发布

19. lstm-timeseries-predict

说明:  时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值(Time series is simply a numerical sequence formed at each time point, time series analysis is to predict future values by observing historical data)

3
下载
91
浏览
2020-08-30发布

20. stock_predict_with_LSTM-master

说明:  基于LSTM预测时序序列数据的完整代码,适合工程使用(The complete code based on LSTM prediction sequence data is suitable for engineering use)

1
下载
80
浏览
2020-08-30发布