第5章
代码说明:
说明: 在许多情况下,利用深度学习算法搭建的神经网络模型都需妥进行某 种形式的优化。 这非常重要,只有经过优化的网络,才能在训练之后达到 不错的解决问题的效果。 优化的最直接目的就是使参数更加准确地更新。 一般神经网络的训练过程大致可以分为两个阶段:第一个阶段先通过 前向传播算法计算得到预测值,并将预测值和真实值做对比,得出两者之 间的差距;在第二个阶段,通过反向传播算法计算损失函数对每一个参数 的梯度,再根据梯度和学习率使用梯度下降算法更新每一个参数。(In many cases, the neural network model built by deep learning algorithm needs to be optimized in some form. This is very important, only after the optimization of the network, in order to achieve good results in solving problems after training. The most direct purpose of optimization is to update parameters more accurately. The training process of general neural network can be roughly divided into two stages: in the first stage, the predicted value is calculated by the forward propagation algorithm, and the difference between the predicted value and the real value is obtained; in the second stage, the loss function is calculated by the back-propagation algorithm for each parameter According to the gradient and learning rate, the gradient descent algorithm is used to update each parameter.)
文件列表:
第5章\5.4, 0 , 2018-06-15
第5章\5.4\5.4-1.py, 439 , 2018-03-29
第5章\5.4\5.4-2.py, 3333 , 2018-03-30
第5章\5.4\5.4-3.py, 840 , 2018-05-07
第5章, 0 , 2018-06-15
下载说明:请别用迅雷下载,失败请重下,重下不扣分!