▍1. 水下图像去雾与增强
这篇论文提出了一种较好的水下图像增强的方法。首先使用经过端到端训练的卷积神经网络去测量输入图片,同时以自适应双边滤波器对传输图片进行处理。接着提出一种基于白平衡的策略来消除图片的颜色偏差,用拉普拉斯金字塔融合获得无雾和色彩校正图像的融合结果。 最后,输出图像被转换为混合小波和方向滤波器组(HWD)域,用于去噪和边缘增强。 实验结果表明,该方法可以消除颜色失真,提高水下图像的清晰度。(This paper proposes a better underwater image enhancement method. Firstly, an end-to-end training convolutional neural network is used to measure the input image, and an adaptive bilateral filter is used to process the transmitted image. Then a strategy based on white balance is proposed to eliminate the color deviation of images. The fusion results of fog-free and color correction images are obtained by Laplacian pyramid fusion. Finally, the output image is converted into hybrid wavelet and directional filter bank (HWD) domain for denoising and edge enhancement. The experimental results show that the method can eliminate color distortion and improve the clarity of underwater images.)