登录
首页 » matlab » 水下图像去雾与增强

水下图像去雾与增强

于 2020-11-02 发布
0 177
下载积分: 1 下载次数: 74

代码说明:

说明:  这篇论文提出了一种较好的水下图像增强的方法。首先使用经过端到端训练的卷积神经网络去测量输入图片,同时以自适应双边滤波器对传输图片进行处理。接着提出一种基于白平衡的策略来消除图片的颜色偏差,用拉普拉斯金字塔融合获得无雾和色彩校正图像的融合结果。 最后,输出图像被转换为混合小波和方向滤波器组(HWD)域,用于去噪和边缘增强。 实验结果表明,该方法可以消除颜色失真,提高水下图像的清晰度。(This paper proposes a better underwater image enhancement method. Firstly, an end-to-end training convolutional neural network is used to measure the input image, and an adaptive bilateral filter is used to process the transmitted image. Then a strategy based on white balance is proposed to eliminate the color deviation of images. The fusion results of fog-free and color correction images are obtained by Laplacian pyramid fusion. Finally, the output image is converted into hybrid wavelet and directional filter bank (HWD) domain for denoising and edge enhancement. The experimental results show that the method can eliminate color distortion and improve the clarity of underwater images.)

文件列表:

hikvision-master\codes\autolevel.m, 2027 , 2019-03-09
hikvision-master\codes\bfilter2.m, 1115 , 2019-03-09
hikvision-master\codes\bfltColor.m, 1354 , 2019-03-09
hikvision-master\codes\bfltGray.m, 1240 , 2019-03-09
hikvision-master\codes\bilateralFilter.m, 6703 , 2019-03-09
hikvision-master\codes\bilateral_filter.m, 1145 , 2019-03-09
hikvision-master\codes\boxfilter.m, 929 , 2019-03-09
hikvision-master\codes\ColorHistogramEqulization.m, 951 , 2019-03-09
hikvision-master\codes\convConst.mexw64, 29184 , 2019-03-09
hikvision-master\codes\convMax.m, 2318 , 2019-03-09
hikvision-master\codes\convolution.m, 772 , 2019-03-09
hikvision-master\codes\darktest.m, 1291 , 2019-03-09
hikvision-master\codes\dark_channelnew.m, 3869 , 2019-03-09
hikvision-master\codes\DEHANZENET.m, 145 , 2019-03-09
hikvision-master\codes\dehaze.m, 700 , 2019-03-09
hikvision-master\codes\dehaze.mat, 31902 , 2019-03-09
hikvision-master\codes\dehaze_fast.m, 1266 , 2019-03-09
hikvision-master\codes\expand.m, 755 , 2019-03-09
hikvision-master\codes\gaussian_pyramid.m, 283 , 2019-03-09
hikvision-master\codes\get_atmosphere.m, 445 , 2019-03-09
hikvision-master\codes\get_dark_channel.m, 585 , 2019-03-09
hikvision-master\codes\get_laplacian.m, 1665 , 2019-03-09
hikvision-master\codes\get_radiance.m, 300 , 2019-03-09
hikvision-master\codes\get_transmission_estimate.m, 256 , 2019-03-09
hikvision-master\codes\guidedfilter.m, 1020 , 2019-03-09
hikvision-master\codes\guided_filter.m, 649 , 2019-03-09
hikvision-master\codes\hpfilter.m, 736 , 2019-03-09
hikvision-master\codes\image2avi.m, 783 , 2019-03-09
hikvision-master\codes\image_dehazing.m, 1254 , 2019-03-23
hikvision-master\codes\lab_to_rgb.m, 90 , 2019-03-09
hikvision-master\codes\laplacian_pyramid.m, 395 , 2019-03-09
hikvision-master\codes\laplacia_conbine.m, 2522 , 2019-03-09
hikvision-master\codes\load_image.m, 158 , 2019-03-09
hikvision-master\codes\main_of_la.m, 741 , 2019-03-09
hikvision-master\codes\main_test_diff_weights.m, 3028 , 2019-03-09
hikvision-master\codes\main_using_optimized.m, 2811 , 2019-03-09
hikvision-master\codes\maxfilt2.m, 1784 , 2019-03-09
hikvision-master\codes\MyHistogramEqulization.m, 1170 , 2019-03-09
hikvision-master\codes\pyramid_reconstruct.m, 308 , 2019-03-09
hikvision-master\codes\RealGWbal.m, 637 , 2019-03-09
hikvision-master\codes\rgb_to_lab.m, 90 , 2019-03-09
hikvision-master\codes\run_cnn.m, 1681 , 2019-03-09
hikvision-master\codes\saliency_detection.m, 2484 , 2019-03-09
hikvision-master\codes\SimplestColorBalance.m, 1749 , 2019-03-09
hikvision-master\codes\sse.hpp, 3125 , 2019-03-09
hikvision-master\codes\ssim.m, 4430 , 2019-03-09
hikvision-master\codes\ssim_score.m, 93 , 2019-03-09
hikvision-master\codes\UICM.m, 777 , 2019-03-09
hikvision-master\codes\UIConM.m, 1881 , 2019-03-09
hikvision-master\codes\UIQM.m, 207 , 2019-03-09
hikvision-master\codes\UISM.m, 2130 , 2019-03-09
hikvision-master\codes\underwater.p, 1319 , 2019-03-09
hikvision-master\codes\underwaterimage2.p, 963 , 2019-03-09
hikvision-master\codes\vanherk.m, 4665 , 2019-03-09
hikvision-master\codes\white_balance.p, 650 , 2019-03-09
hikvision-master\codes\window_sum_filter.m, 608 , 2019-03-09
hikvision-master\demo.m, 434 , 2019-04-27
hikvision-master\Images\001.png, 287992 , 2019-03-09
hikvision-master\Images\002.png, 178049 , 2019-03-23
hikvision-master\Images\003.png, 438725 , 2019-03-23
hikvision-master\Images\004.bmp, 675818 , 2019-03-16
hikvision-master\Images\005.jpg, 23362 , 2019-03-23
hikvision-master\Images\006.jpg, 10311 , 2019-03-23
hikvision-master\Images\007.jpg, 28297 , 2019-03-23
hikvision-master\Images\008.png, 223112 , 2019-03-23
hikvision-master\Images\009.jpg, 66374 , 2019-03-16
hikvision-master\Images\010.jpg, 7571 , 2019-03-23
hikvision-master\Images\011.jpg, 40474 , 2019-03-16
hikvision-master\Images\012.jpg, 1043605 , 2019-03-16
hikvision-master\Images\013.jpg, 420742 , 2019-03-16
hikvision-master\Images\014.jpg, 177970 , 2019-03-16
hikvision-master\Images\015.jpg, 113576 , 2019-03-16
hikvision-master\Images\016.jpg, 116954 , 2019-03-16
hikvision-master\Images\017.jpg, 47446 , 2019-03-16
hikvision-master\Images\018.jpg, 28685 , 2019-03-23
hikvision-master\Images\019.jpg, 28271 , 2019-03-23
hikvision-master\Images\020.jpg, 12690 , 2019-03-23
hikvision-master\Images\021.jpg, 26831 , 2019-03-23
hikvision-master\Images\022.jpg, 39097 , 2019-03-23
hikvision-master\Images\023.jpg, 11800 , 2019-03-23
hikvision-master\Images\024.jpg, 26359 , 2019-03-23
hikvision-master\Images\025.jpg, 28606 , 2019-03-23
hikvision-master\Images\026.jpg, 14047 , 2019-03-23
hikvision-master\Images\027.jpg, 14926 , 2019-03-23
hikvision-master\Images\028.jpg, 23628 , 2019-03-23
hikvision-master\Images\029.jpg, 37295 , 2019-03-23
hikvision-master\Images\030.jpg, 20874 , 2019-03-23
hikvision-master\Images\031.jpg, 91049 , 2019-03-16
hikvision-master\Images\032.jpg, 162554 , 2019-03-23
hikvision-master\Images\033.jpg, 111174 , 2019-03-23
hikvision-master\Images\3001.jpg, 13541 , 2019-03-23
hikvision-master\Images\3002.jpg, 14686 , 2019-03-23
hikvision-master\Images\3003.jpg, 31071 , 2019-03-16
hikvision-master\Images\3004.jpg, 38339 , 2019-03-16
hikvision-master\Images\5001.jpg, 91900 , 2019-03-23
hikvision-master\Images\5002.png, 220444 , 2019-03-23
hikvision-master\Images\5003.jpg, 17096 , 2019-03-09
hikvision-master\Images\50031.jpg, 68190 , 2019-03-23
hikvision-master\Images\5004.jpg, 51855 , 2019-03-23
hikvision-master\Images\5005.jpg, 52676 , 2019-03-23

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab2
    matlab的四种边缘提取办法比较(代码)(the four edge detection matlab comparison approach (code))
    2009-06-01 19:30:53下载
    积分:1
  • blinear(matlab)
    说明:  图像几何变换(如旋转)时用到的最近领域和双线性插值方法,(Image geometric transformations (eg rotation), when used in recent field and bilinear interpolation methods,)
    2008-09-19 08:43:12下载
    积分:1
  • mx-maskrcnn-master
    说明:  我们提出了一个简单、灵活和通用的对象实例分割框架。我们的方法能有效检测图像中的对象,同时为每个实例生成高质量的 segmentation mask。这种被称为 Mask R-CNN 的方法通过添加用于预测 object mask 的分支来扩展 Faster R-CNN,该分支与用于边界框识别的现有分支并行。Mask R-CNN 训练简单,只需在以 5fps 运行的 Faster R-CNN 之上增加一个较小的 overhead。此外,Mask R-CNN 很容易推广到其他任务,例如它可以允许同一个框架中进行姿态估计。我们在 COCO 系列挑战的三个轨道任务中均取得了最佳成果,包括实例分割、边界对象检测和人关键点检测。没有任何 tricks,Mask R-CNN 的表现优于所有现有的单一模型取得的成绩,包括 COCO 2016 挑战赛的冠军。(Mask R-CNN code by HeKaiming)
    2020-06-17 15:20:12下载
    积分:1
  • flutter
    采用片条理论进行机翼的颤振分析,匹配点和非匹配点分析(Carried out using strip theory wing flutter analysis, matching and non-matching point analysis points)
    2013-12-15 16:06:58下载
    积分:1
  • MoveCatch
    对移动目标检测,需要先用鼠标框定感兴趣的目标,然后才能追踪。(Moving target detection, target mouse framed interested need to use before tracking.)
    2016-08-15 17:59:52下载
    积分:1
  • 作品
    3dx的作业,一个不错的程序,难度易(3dx operations, it is a good procedure, the difficulty Yi)
    2005-01-13 13:18:54下载
    积分:1
  • CustomLinkLibrary
    说明:  Custom Link Library example source code
    2020-03-01 21:33:36下载
    积分:1
  • denoise
    说明:  采用自适应非局部降噪的算法对图像进行去噪处理,能够实现不同算法的降噪处理(Using adaptive non-local denoising algorithm to denoise image can achieve denoising processing of different algorithms.)
    2019-06-06 20:16:16下载
    积分:1
  • picture
    说明:  图像边缘检测及图像区域分割、目标检测、目标识别(Image edge detection, image region segmentation, target detection and target recognition)
    2020-04-04 14:14:27下载
    积分:1
  • mesh
    三维模型的网格简化算法,通过删除边来减少面片个数,同时保留图形特征(Three-dimensional model of the mesh simplification algorithm to reduce the number of patches by removing the side, while retaining graphic features)
    2014-04-01 14:42:35下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载