▍1. Python编程:从入门到实践
说明: 从入门到实践,比较好的适宜入门的Python类书籍(From entry to practice)
说明: 从入门到实践,比较好的适宜入门的Python类书籍(From entry to practice)
深度信念网络工具箱,用python写的,包含了受限波尔兹曼机的程序(deep belief network toolbox, including Restricted Boltzmann Machines, python edition)
说明: 重油燃烧机理chemkin机理文件,反应步数较多,需要较大服务器计算(Heavy oil combustion mechanism chemkin mechanism file, more reaction steps.)
说明: 雾计算模拟平台,用于边缘计算或者雾计算平台的模拟(Use for fog computing simulation)
用于批量提取abaqus的节点力,而不是积分点的力(Node force for batch extraction of abaqus, not integral point force)
说明: 用于批量提取abaqus的节点力,而不是积分点的力(Node force for batch extraction of abaqus, not integral point force)
该程序是学者编写的一个插件,直接将该插件放在临时文件中即可使用,针对简单单胞施加周期性边界。(The program is a plug-in written by foreign scholars, which can be used directly in temporary files and impose periodic boundaries on simple cells.)
说明: abaqus 插件用于插入内聚力单元,用于裂纹扩展模拟(Insert cohesive unit in abaqus)
说明: easy PBC插件,可以自动添加周期性边界条件,python开源代码(Easy PBC plug-in, can automatically add periodic boundary conditions, python open source code)
说明: 图着色局部搜索,图着色问题(Graph Coloring Problem, GCP) 又称着色问题,是最著名的NP-完全问题之一。道路着色问题(Road Coloring Problem)是图论中最著名的猜想之一。 数学定义:给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。其优化版本是希望获得最小的K值。(Graph Coloring Problem (Graph Coloring Problem, GCP), also known as coloring problem, is one of the most famous NP-complete problems. The Road Coloring Problem is one of the most famous conjectures in graph theory. Mathematical definition: Given an undirected graph G=(V, E), where V is the set of vertices and E is the set of edges, the graph coloring problem is to divide V into K color groups, and each group forms an independent set. That is, there are no adjacent vertices. The optimized version is to get the smallest K value.)
利用深度学习进行遥感图像场景分类 这里我们对NWPU-RESISC45数据集的场景图像进行分类 我们将卷积神经网络应用于图像分类。我们从头开始训练数据集。此外,还应用了预先训练的VGG16 abd ResNet50进行迁移学习。(Scene Classification of Remote Sensing Images Using Deep Learning Here we classify scene images from NWPU-RESISC45 dataset We apply convolutional neural network to image classification. We start training data sets from scratch. In addition, a pre-trained VGG16 abd ResNet50 is used for migration learning.)
说明: 利用深度学习进行遥感图像场景分类 这里我们对NWPU-RESISC45数据集的场景图像进行分类 我们将卷积神经网络应用于图像分类。我们从头开始训练数据集。此外,还应用了预先训练的VGG16 abd ResNet50进行迁移学习。(Scene Classification of Remote Sensing Images Using Deep Learning Here we classify scene images from NWPU-RESISC45 dataset We apply convolutional neural network to image classification. We start training data sets from scratch. In addition, a pre-trained VGG16 abd ResNet50 is used for migration learning.)
说明: 自动抢购京东抢购商品,如抢显卡、手机。登录后,复制商品ID,修改到配置文件后,到时间自动抢购(Automatic rush to buy Jingdong rush to buy goods, such as graphics card and mobile phone)
利用python+opencv测量图片中目标物体之间的距离(Measuring distance between objects in an image with OpenCV)
说明: 利用python+opencv测量图片中目标物体之间的距离(Measuring distance between objects in an image with OpenCV)
说明: 强化学习网页浏览示例,非常好的示例代码。强化学习快速入门(Reinforcement learning web browsing example, very good example code)
说明: 深度强化学习炒股示例,包含DQN。代码清晰,非常好。(Deep Reinforcement Learning Hands on Stock)
说明: 深度强化学习示例,包含很多常用算法。代码清晰,非常好。(Deep Reinforcement Learning Hands on)