fit_ML_normal
代码说明:
fit_ML_normal - Maximum Likelihood fit of the normal distribution of i.i.d. samples!. Given the samples of a normal distribution, the PDF parameter is found fits data to the probability of the form: p(r) = sqrt(1/2/pi/sig^2)*exp(-((r-u)^2)/(2*sig^2)) with parameters: u,sig^2 format: result = fit_ML_normal( x,hAx ) input: x - vector, samples with normal distribution to be parameterized hAx - handle of an axis, on which the fitted distribution is plotted if h is given empty, a figure is created. output: result - structure with the fields sig^2,u - fitted parameters CRB_sig2,CRB_u - Cram?r-Rao Bound for the estimator value RMS - RMS error of the estimation type - ML
下载说明:请别用迅雷下载,失败请重下,重下不扣分!