登录
首页 » matlab » Simulations_for_ofdm_Systems-Design

Simulations_for_ofdm_Systems-Design

于 2021-03-30 发布 文件大小:213KB
0 298
下载积分: 1 下载次数: 998

代码说明:

  此仿真程序是目前论坛里面最完整的仿真源码,并且经本人调试运行,完全没有错误,有很高的研究价值。为各位搞仿真和做OFDM系统相关论文的研究生,而没有全面仿真程序的人提供本程序。此程序包含52个仿真模块,可以仿真出52个仿真图。(This simulation program is the forum inside the most complete source of emulation and debugging, as I run, there is no error, has high research value. For you to do engage in OFDM system simulation and related post-graduate theses, and no comprehensive simulation program provide the program. This program contains 52 simulation module can be a simulation simulation Figure 52.)

文件列表:

Simulations for ofdm Systems Design
...................................\addnoise.m
...................................\array.fig
...................................\array.m
...................................\Barker_ambig.m
...................................\burn_thru.m
...................................\Capped_WedgeTM.m
...................................\Capped_Wedge_GUI.fig
...................................\Capped_Wedge_GUI.m
...................................\casestudy1_1.m
...................................\circular_array.m
...................................\circ_array.m
...................................\clutterrcsgui.m
...................................\clutter_rcs.m
...................................\clutter_rcs_gui.fig
...................................\clutter_rcs_gui.m
...................................\cylinder.m
...................................\cylinderi.m
...................................\cylinderRCS_fig.mat
...................................\dbesselh.m
...................................\dbesselj.m
...................................\dbessely.m
...................................\DielCappedWedgeTMFields_Ls.m
...................................\DielCappedWedgeTMFields_PW.m
...................................\double_canceler.m
...................................\example11_1.m
...................................\factor.m
...................................\fig10_8.m
...................................\fig11_18a.m
...................................\fig12_12-13.m
...................................\fig1_12.m
...................................\fig1_13.m
...................................\fig1_16.m
...................................\fig1_19.m
...................................\fig1_21.m
...................................\fig1_23.m
...................................\fig1_27.m
...................................\fig1_28.m
...................................\fig2_10.m
...................................\fig2_11ab.m
...................................\fig2_12.m
...................................\fig2_13.m
...................................\fig2_14.m
...................................\fig2_16.m
...................................\fig2_2.m
...................................\fig2_21.m
...................................\Fig2_3.m
...................................\fig2_6a.m
...................................\fig2_6b.m
...................................\Fig2_7.m
...................................\Fig2_8.m
...................................\fig2_9.m
...................................\fig3_17.m
...................................\fig3_7.m
...................................\fig3_8.m
...................................\fig3_8a.m
...................................\fig3_8_v1.m
...................................\Fig4_2.m
...................................\fig4_4.m
...................................\fig4_5.m
...................................\Fig4_6.m
...................................\fig4_8.m
...................................\fig5_14.m
...................................\fig5_3.m
...................................\fig710.m
...................................\fig7_10.m
...................................\fig7_10a.m
...................................\fig7_10b.m
...................................\fig7_10c.m
...................................\fig7_11.m
...................................\fig7_9.m
...................................\fig8_5.m
...................................\fig8_53.m
...................................\fig8_7.m
...................................\fig9_20.m
...................................\fig9_21.m
...................................\fig9_27.m
...................................\fig9_28.m
...................................\figs13.m
...................................\fluct_loss.m
...................................\fresnelc.m
...................................\fresnels.m
...................................\fxdwght.m
...................................\ghk_tracker.m
...................................\hrr_profile.m
...................................\improv_fac.m
...................................\incomplete_gamma.m
...................................\initialize.m
...................................\kalfilt.m
...................................\kalm.m
...................................\kalman_filter.m
...................................\kalman_gui.fig
...................................\kalman_gui.m
...................................\LFM.m
...................................\lfm_ambg.m
...................................\LFM_gui.fig
...................................\LFM_gui.m
...................................\linear_array.m
...................................\linear_array_gui.fig
...................................\linear_array_gui.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GeneticAlgorithm
    遗传算法(GeneticAlgorithm)实例(Genetic Algorithm (GeneticAlgorithm) examples)
    2007-12-06 22:49:06下载
    积分:1
  • ctpIF1005(20100419)
    CtpIF1005 (20100419)期货数据2010年4月16日(CtpIF1005 (20100419) futures data for April 16, 2010 )
    2014-12-28 00:22:24下载
    积分:1
  • niu-dun-die-dai-
    基于matlab编程,用牛顿迭代法解决非线性方程,(Based on Matlab programming, Newton iterative method to solve nonlinear equations,)
    2013-05-14 10:10:32下载
    积分:1
  • liulu0317
    直线电机的 pid 和速度加速度前馈的,对比,还可以(Linear motor acceleration feedforward)
    2015-03-31 16:02:32下载
    积分:1
  • Lax_Friedrichs
    有限差分求burgers方程...LAX-FRIEDRICH(Finite difference burgers was not beg equation )
    2014-06-30 10:53:54下载
    积分:1
  • inverter_models
    different mathematical models of invertor in different frame of refrences
    2009-11-17 08:41:45下载
    积分:1
  • 一维等离子体的so-fdtd算法
    一维等离子体的so—fdtd算法程序,也可推广到一般色散介质。(One-dimensional plasma so-fdtd algorithm program)
    2011-02-15 11:25:45下载
    积分:1
  • Numerical-Methods-for-PDE
    一、椭圆型偏微分方程 1. Helmholtz方程 及 特例(Possion方程, Laplace方程); Helmholtz.m possion 2. 满足牛顿边值条件的Helmholtz方程;Helmholtz_Newton.m 二、抛物线型偏微分方程 1. 显式前向欧拉法 EF_Euler.m 2. 隐式后向欧拉法 IB_Euler.m 3. Grank-Nicholson法 Grank_Nicholson.m 4. 二维热传导抛物线方程 TDE.m 三、双曲线型偏微分方程 1. 显式中心差分法(一维波动方程) ECD_Wave.m 2. 显式中心差分法(二维波动方程) Wave2.m 四、有限元法 二维偏微分法方程(拉普拉斯方程) fem_basis_ftn.m Show_Basis.m fem_coef 五、使用GUI形式的偏微分方程求解工具求解偏微分方程(PDETOOL) 来自《精通Matlab科学计算》第三版(Numerical Methods for PDE)
    2021-03-28 22:09:11下载
    积分:1
  • lm1
    三个分段相连的信号的傅里叶变换和时频分析;Chirp 信号的傅里叶变换和时频分析;信号的子带分解(Linked to three sub-signals Fourier transform and time-frequency analysis Chirp signal Fourier transform and time-frequency analysis signal subband decomposition)
    2007-12-12 09:43:06下载
    积分:1
  • shuzituxiangshuiyin
    说明:  能够很好的实现混沌数字水印技术 并且具有创新功能 (Can achieve the chaotic digital watermarking technology and innovative features)
    2011-03-22 16:51:04下载
    积分:1
  • 696518资源总数
  • 106259会员总数
  • 28今日下载