登录
首页 » matlab » LFDA

LFDA

于 2009-06-09 发布 文件大小:350KB
0 106
下载积分: 1 下载次数: 112

代码说明:

  lfda,局部线性判别式分析,可解决多模型数据分布问题(lfda)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Power-Flow-Solution-by-Newton-Raphson-Method
    Power Flow Solution by Newton-Raphson Method
    2013-11-30 15:23:59下载
    积分:1
  • control-systems-for-microgrids
    Microgrids control systems
    2014-08-24 02:58:06下载
    积分:1
  • rehdb3
    这是一个HDB3译码的matlab程序,可进行信源译码,可以做为一个子程序(This is a HDB3 decoder matlab program source decoder can be used as a subroutine)
    2012-09-11 09:41:58下载
    积分:1
  • JOptVRP
    (实例)最短路径分析源码,可以作为路径分析的参考依据,可作为基于最短路径算法的物流配送车辆优化调度(VRP)的研究((Instances) source shortest path analysis, path analysis can be used as a reference, the study can be used as distribution logistics shortest path algorithm based on vehicle scheduling (VRP))
    2014-02-10 15:51:52下载
    积分:1
  • matlab13
    QAM modulation scheme for spreading codes gray
    2011-04-26 07:23:33下载
    积分:1
  • swathikapro
    shape model detection
    2010-12-25 13:55:25下载
    积分:1
  • shanks
    function [a,b,err] = shanks(x,p,q) SHANKS Model a signal using Shanks method ---- Usage: [a,b,err] = shanks(x,p,q) The sequence x is modeled as the unit sample response of a filter having a system function of the form H(z) = B(z)/A(z) The polynomials B(z) and A(z) are formed from the vectors b=[b(0), b(1), ... b(q)] a=[1 , a(1), ... a(p)] The input q defines the number of zeros in the model and p defines the number of poles. The modeling error is returned in err.
    2012-04-18 09:58:03下载
    积分:1
  • music
    MUSIC方法,对相关矩阵分解为噪声子空间和信号子空间,然后搜索得到需要估计的频谱(MUSIC method, the decomposition of the correlation matrix for the noise subspace and signal subspace, then search to get the spectrum to be estimated)
    2011-06-28 22:12:45下载
    积分:1
  • KNN
    K最邻近密度估计技术是一种分类方法,不是聚类方法。 不是最优方法,实践中比较流行。 通俗但不一定易懂的规则是: 1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。 2.选出最小的前K数据个距离,这里用到选择排序法。 3.对比这前K个距离,找出K个数据中包含最多的是那个类的数据,即为待分类数据所在的类。(K nearest neighbor density estimation is a classification method, not a clustering method. It is not the best method, but it is popular in practice. Popular but not necessarily understandable rule is: 1. calculate the distance between the data to be classified and the data in each other (Euclidean or Markov). 2. select the minimum distance from the previous K data, where the choice sorting method is used. 3. compare the previous K distances to find out which K data contains the most data of that class, that is, the class to which the data to be classified is located.)
    2020-10-23 14:37:22下载
    积分:1
  • Adding_Noise_and_Image_Restoration
    Adding Noise and the Restoring
    2014-08-20 06:09:25下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载