登录
首页 » matlab » error_diff

error_diff

于 2010-12-07 发布 文件大小:1KB
0 102
下载积分: 1 下载次数: 17

代码说明:

  用3中误差扩散滤波器实现误差扩散,分别是floyd stein, sierra, Stenenson滤波器(Error diffusion filter with a 3 to achieve error diffusion, respectively, floyd stein, sierra, Stenenson filter)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • [Matlab]
    matlab 光线补偿 有照片 可以自己验证一下(matlab photo light compensation can verify their own)
    2011-09-19 11:00:36下载
    积分:1
  • tongzhouxianshiyufenxi
    多导体传输线分析中同轴线的时域分析程序,(Analysis of multi-conductor transmission line coaxial time-domain analysis program,)
    2017-02-21 13:32:05下载
    积分:1
  • cressman_interp
    说明:  客观分析法插值SST程序,包括等权重法,cressman法和Barnes法三种客观分析方法。(Objective analysis method interpolation SST program includes three objective analysis methods: equal weight method, Cressman method and Barnes method.)
    2020-10-19 11:23:08下载
    积分:1
  • flops
    matlab matrix processing functions
    2010-12-08 01:50:41下载
    积分:1
  • shortest-path-algorithm-matlab
    两种比较常见的最短路径的matlab算法 (Two of the more common of the shortest path algorithm matlab)
    2011-05-11 16:40:29下载
    积分:1
  • ASM_wirecoupling
    simulation in adaptive antenna
    2010-06-17 00:50:01下载
    积分:1
  • edge_detection
    this is for edge detection algorithm.......
    2010-11-06 14:48:50下载
    积分:1
  • fft_li
    对数据进行傅立叶分析,从时域转换到频域,观察信号的频谱结构,从分析信号的特点(Fourier analysis of the data, the time domain to the frequency domain, spectral structures of the observed signal, the signal characteristics the analysis)
    2015-12-05 19:31:23下载
    积分:1
  • li2015
    说明:  energy management in smart grid
    2019-03-28 20:55:42下载
    积分:1
  • EM算法(讲解+序)
    说明:  EM 算法是Dempster,Laind,Rubin于1977年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据、截尾数据以及带有噪声等所谓的不完全数据,可以具体来说,我们可以利用EM算法来填充样本中的缺失数据、发现隐藏变量的值、估计HMM中的参数、估计有限混合分布中的参数以及可以进行无监督聚类等等。(EM algorithm is a method for maximum likelihood estimation of parameters proposed by Dempster, Laind and Rubin in 1977. It can estimate parameters from incomplete data sets by MLE. It is a very simple and practical learning algorithm. This method can be widely used in dealing with the so-called incomplete data such as defective data, censored data and noisy data. Specifically, we can use EM algorithm to fill missing data in samples, find hidden variable values, estimate parameters in HMM, estimate parameters in finite mixed distribution, and so on. Unsupervised clustering and so on.)
    2020-07-04 06:00:01下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载