登录
首页 » matlab » QAM_AWGN_Fading

QAM_AWGN_Fading

于 2009-11-12 发布 文件大小:1KB
0 88
下载积分: 1 下载次数: 3

代码说明:

  antennas program and the radiation patterns also available

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 差别算法MATLAB代码及粒子群算法的介绍
    说明:  差别算法matlab代码(differential algorithm)及粒子群算法的介绍(difference algorithm Matlab code (differential algorithm) and the PSO algorithm introduced)
    2005-12-23 15:38:41下载
    积分:1
  • FDTD
    说明:  基于UPML吸收边界的三维FDTD数值模拟程序(3-D FDTD code with UPML)
    2011-03-22 13:56:21下载
    积分:1
  • m
    说明:  线阵天线方向图仿真M文件,七元线形天线阵(Linear array antenna directed graph simulation M files)
    2011-05-03 15:15:52下载
    积分:1
  • 3
    根据教科书上已经给出的简单的数学算式,运用matlab编写出简单的代码,计算出结果(According to the textbook has been given a simple mathematical formula, using matlab write simple code to calculate the results)
    2013-09-14 18:59:13下载
    积分:1
  • xppwin
    解决ode45问题的非常强大的软件,另一个是matcont,不过后者需要在matlab环境下运行(Very powerful software to solve the problem of ode45, another is the matcont, but the latter needs to run in matlab environment)
    2015-04-09 20:19:58下载
    积分:1
  • q_learn
    说明:  基于matlab实现强化学习算法中的Q-learning算法,进行训练(The Q-learning algorithm of reinforcement learning algorithm is realized based on MATLAB)
    2021-01-28 22:32:44下载
    积分:1
  • 1
    说明:  Resolution geometrique pour encoder incremental
    2011-02-05 06:00:03下载
    积分:1
  • SFSDP111.tar
    SFSDP is a Matlab package for solving sensor network localization problems. The package contains four functions, SFSDP.m, SFSDPplus.m, generateProblem.m, test SFSDP.m, and some numerical examples.
    2015-02-17 02:15:21下载
    积分:1
  • Node-admittance-matrix
    形成14节点的电力系统节点导纳矩阵,其中包含程序运行时所用到的关于网络的参数表,程序有详细的注释(Forming a 14-node system node admittance matrix of power, which includes the use of the program is running on the network parameter table, the program has detailed notes)
    2020-12-23 10:59:07下载
    积分:1
  • RBF_per
    先归一化输入输出参数,用KMens优化RBF神经网络中心值,然后计算隐节点数据中心间的距离(矩阵),得到各隐节点的扩展常数(宽度),接着用最小二乘法得到各隐节点的输出权值,对数据进行反归一化,并绘图得到神经网络输出与测试集图,同时进行性能评价(First, the input and output parameters are normalized, the central value of the RBF neural network is optimized by KMens, then the distance (matrix) between the data centers of the hidden nodes is calculated, and the extended constant (width) of the hidden nodes is obtained. Then the output weights of the hidden nodes are obtained by the least square method, and the data are back normalized, and the neural network is drawn. Output and test set diagrams, and performance evaluation)
    2021-01-12 10:18:49下载
    积分:1
  • 696518资源总数
  • 104228会员总数
  • 45今日下载