-
神经网络模式识别及其实现,第九章。
内含:HOPFIELD和LAM
神经网络模式识别及其实现,第九章。
内含:HOPFIELD和LAM -pattern recognition and neural network to achieve, chap. Intron : LAM and HOPFILED
- 2022-05-30 02:08:34下载
- 积分:1
-
神经网络的HP算法,这是神经网络入门的好程序
神经网络的HP算法,这是神经网络入门的好程序-HP neural network algorithm, this neural network is a good entry procedures
- 2023-08-27 14:00:03下载
- 积分:1
-
这个目录包含实现通用reqursive最小二乘效用…
This directory contains utility for implementing generic Reqursive Least Squares (RLS) algorithm. The example shows how one can use the utility to estamate the parameters of a simple linear discrete time system.
- 2022-07-14 08:22:15下载
- 积分:1
-
预
pre-fixSpan算法,该算法是C++语言实现的,主要用模板实现prefixspan的投影数据库架构及模式生长功能
- 2023-04-17 20:10:03下载
- 积分:1
-
基于遗传算法和bp网络的简单人脸识别,只能识别三种表情。图像经过简单的小波变换处理...
基于遗传算法和bp网络的简单人脸识别,只能识别三种表情。图像经过简单的小波变换处理-Bp networks based on genetic algorithm and a simple face recognition, could only identify three kinds of expressions. After a simple wavelet transform image processing
- 2022-03-01 00:24:39下载
- 积分:1
-
LM programming algorithm, in a large neural network applications, the neural net...
LM编程算法,在神经网络中有很大应用之处,神经网络源代码,及BP网络训练界面,其中的L-M算法非常实用
-LM programming algorithm, in a large neural network applications, the neural network source code, and the BP network training interface, in which the LM algorithm is very practical
- 2023-01-05 13:40:03下载
- 积分:1
-
一遗传算法的例子源程序
一遗传算法的例子源程序-Example of a genetic algorithm source code
- 2022-11-13 10:05:04下载
- 积分:1
-
一个fuzzybp训练程序,初学者应该学习入门
一个模糊的YBP训练程序,初学者应该从入门开始学习
- 2022-03-18 01:27:56下载
- 积分:1
-
本程序用NetLogo开放,模拟行人流。为本人亲字编程。
本程序用NetLogo开放,模拟行人流。为本人亲字编程。-the procedures used NetLogo open simulated flow. I affinity for the word programming.
- 2023-01-10 18:25:04下载
- 积分:1
-
1、编制程序显示印章图像(24位真彩色位图);
2、读出位图中每一像素点的(R,G,B)样本值;
3、以RGB其中某两个(或三个)为坐标,取一定数量的图...
1、编制程序显示印章图像(24位真彩色位图);
2、读出位图中每一像素点的(R,G,B)样本值;
3、以RGB其中某两个(或三个)为坐标,取一定数量的图像点为分析样本,分析其坐标系中的分布;
4、采用本章学习的方法找到分类判别函数,对这些样本进行分类;(要求首先将印章与底纹区分,如有可能将印章、底纹、签字区分)
5、将分类后的结果标记到原始图像上,检查其效果。
-1, the preparation procedures showed that the seal image (24-bit true color bitmap) 2, read out each bitmap pixel (R, G, B) sample value 3 to RGB which a two (or three ) for the coordinates, take a certain number of image points for the analysis of samples, analysis of its coordinate system of distribution 4, the method used in this chapter to learn to find discriminant function classification of these samples for classification (required first to distinguish between the seal and Shading, if possible, will seal, Shading, signatures to distinguish between) 5, will be the result of classification markings to the original image to check its effectiveness.
- 2022-04-27 00:31:30下载
- 积分:1