-
lempel encoding algorithm
你好,
- 2022-08-23 02:34:29下载
- 积分:1
-
Runge
Runge-Kutta-Verner方法求积分,包括cpp源码-Runge-Kutta-Verner method of quadrature, including the cpp source code
- 2022-02-05 09:26:15下载
- 积分:1
-
工业机器人PUMA560逆解算法
资源描述工业机器人PUMA560逆解算法,使用VS2012环境编译实现,输入机器人末端齐次矩阵,可得八组逆解关节角度。
- 2022-04-27 09:03:28下载
- 积分:1
-
Gateway v.10 c++
Gateway , bad packet convert to and send gameserver and fix all wrong packets , written by osmanx share ty kingofknight.net thanksssssssssssssss
- 2022-02-01 01:13:47下载
- 积分:1
-
二维屏幕上表现三维点的绘制方法――适合图形编程的数字运算方法原理...
二维屏幕上表现三维点的绘制方法――适合图形编程的数字运算方法原理-2D screen performance 3D Rendering point-- suitable for graphical programming method of calculation principle
- 2022-04-14 15:50:00下载
- 积分:1
-
Loans algorithm.
双色球算法。-Loans algorithm.
- 2022-04-27 14:58:38下载
- 积分:1
-
这是一个迭代法实现的C代码。本算法采用的是SOR迭代法。
这是一个迭代法实现的C代码。本算法采用的是SOR迭代法。-This is an iterative method to achieve the C code. This algorithm is used SOR iteration.
- 2022-05-10 22:57:04下载
- 积分:1
-
OpenCV非线性滤波示例程序
我们用轨迹条来控制滤波器,来动态得到不同滤波效果1.已将dll打包到Release文件夹下,运行Release文件夹中的exe可以直接看到运行结果.2.源代码运行需要进行OpenCV+VS开发环境的配置。我是使用编写环境:Visual Studio 2010写作当前代码时配套使用的OpenCV版本: 2.4.8
- 2022-09-24 08:00:02下载
- 积分:1
-
MATLAB非光滑牛顿法求解互补问题
用MATLAB编写的求解互补问题的程序,利用的是非光滑牛顿法求解,在运筹学最优化问题中是常用的算法,代码中ncp是主函数。
- 2022-03-07 19:12:47下载
- 积分:1
-
C++ ItemCF
UserCF和ItemCF是协同过滤中最为古老的两种算法,在top-N的推荐上被广泛应用。这两个算法之所以重要,是因为他们使用了两个不同的推荐系统基本假设。UserCF认为一个人会喜欢和他有相同爱好的人喜欢的东西,而ItemCF认为一个人会喜欢和他以前喜欢的东西相似的东西。这两个假设都有其合理性。根据我的测试,用UserCF和ItemCF做出的推荐列表中,只有50%是一样的,还有50%完全不同。但是这两个算法确有相似的精度。所以说,这两个算法是很互补的。我一直认为这两个算法是推荐系统的根本,因为无论我们是用矩阵,还是用概率模型,我们都非常的依赖于前面说的两种假设。如果用户的行为不符合那两种假设,推荐系统就没必要存在了。因此我一直希望能够找出这两种算法的本质区别。他们有相似的精度,但是coverage相差很大,ItemCF coverage很大而UserCF很小。我还测试了很多其他指标,不过要从这些表象的指标差异找出这两个算法的本质区别还是非常困难。不过上周我基本发现了这两个算法推荐机理的本质区别。我们做如下假设。每个用户兴趣爱好都是广泛的,他们可能喜欢好几个领域的东西。不过每个用户肯定也有一个主要的领域,对这个领域会比其他领域更加关心。给定一个用户,假设他喜欢3个领域A,B,C,同时A是他喜欢的主要领域。这个时候我们来看UserCF和ItemCF倾向于做出什么推荐。结果如下,如果用UserCF, 它会将A,B,C三个领域中比较热门的东西推荐给用户。而如果用ItemCF,它会基本上只推荐A领域的东西给用户。因为UserCF只推荐热门的,所以UserCF在推荐长尾上能力不足。而ItemCF只推荐A领域给用户,这样他有限的推荐列表中就可能包含了一定数量的不热门item,所以ItemCF推荐长尾的能力比较强。不过ItemCF的推荐对某一个用户而言,显然多样性不足。但是对整个系统而言,因为不同的用户的主要兴趣点不同,所以系统的coverage会很大。显然上面的两种推荐都有其合理性,但都不是最好的选择,因此他们的精度也会有损失。最好的选择是,如果我们给这个用户推荐30个item,我们既不是每个领域挑选10个最热门的给他,也不是推荐30个A领域的给他,而是比如推荐15个A领域的给他,剩下的15个从B,C中选择。认识到这一
- 2022-03-26 08:57:57下载
- 积分:1