-
遥感影像匀色镶嵌分幅处理软件QMosaic V6.0
关注最新版本更新地址:http://blog.csdn.net/cmfootball/article/details/17793483特点: 多种匀色功能(色彩校正、色彩匹配和色彩映射); 多种镶嵌线自动生成功能,有效避开建筑物,保证影像无漏洞; 多种输出功能(镶嵌整体输出、AOI裁切,AOI挖洞,矢量分幅和标准分幅输出);1. 动态投影显示:利用重投影技术,支持不同坐标系影像进行叠加显示;2. 多种匀色功能:提供多种匀色方法选择,包括“色彩校正”、“色彩匹配”和“色彩映射”,使得镶嵌结果更加真实;3. 镶嵌线网络自动生成:解决了镶
- 2021-05-06下载
- 积分:1
-
LFM及匹配滤波的MATLAB程序
线性调频信号的仿真,及匹配滤波的MATLAB代码
- 2020-12-06下载
- 积分:1
-
基于Adaboost算法的人脸识别 北京大学赵楠
人脸检测和人脸识别都是属于典型的机器学习的方法,但是他们使用的方法却相差很大。对于人脸检测而言,目前最有效的方法仍然是基于Adaboost的方法。在网上可以找到很多关于Adaboost方法的资料,但基本上是千篇一律,没有任何新意。给初学者带了很多不便。建议初学者只需要认真阅读:北京大学 赵楠 的本科毕业论文 :基于 AdaBoost算法的人脸检测 这篇毕业论文就够了。作者详细分析了Adaboost算法在人脸检测中的具体执行过程,尤其是关于弱分类器的Haar特征选取过程,描述的相当清晰。北京大学太科生业论文最后一章,用编写的实现了 Adaboost算法的FDt程序,给出了相应的人脸检测实验结果,并和 Viola等人的结果做了比较关键词 Keywords∧ adaboost方法、人脸检测、 Boosting方法、PCA学习模型、弱学习工工TI北京大学太科生业论文谨以此论文献给A腺嘌呤、T胸腺嘧啶、G鸟嘌呤、C胞嘧啶、1和0-智能的基本构件和开拓智能研究的伟大先驱者们This dissertation is dedicated toA, T, G, C, 1 and o, the building blocks ofintelligence.andto the pioneers uncovering the foundations ofintelligence.北京大学太科生业论文正文目录 Contents摘要 ABSTRaCTI正文目录 CONTENTS图录LISTOFFIGURES…I表目录LISTOF TABLES····················a···········ba·。·········。··。······VIII人脸检··11概12难点与展望213人脸检测方法的性能评测1.31人脸图像数据库………41.3.2性能评测.2检测方法分类…2,1基于知识的方法●●●●●·●··●●●●●D·●b●鲁●·●●●。●。D●●·●●·●·。D。●。·。。●●●D·●看●。·●。·D●看●看。●。●8北京大学本科生毕业论文22特征不变量方法3模板匹配方法●香●鲁●鲁·●D·。●·。●·鲁●●鲁·●鲁鲁●●●鲁●·鲁··。●·●鲁音·●鲁。●···。·●●●鲁自●·鲁鲁。●●●b·●鲁自非b●●。●10基于表象的方法113经典方法概述···············.s.····················································121神经网络NEURALNETWORK232特征脸EIGENFACE1333基于样本学习方法 EXAMPLE-BASEDMETHODS34支持向量机 SUPPORTⅴ ECTOR MACHINE(SVM)........1535隐马尔科夫模型 HIDDEN MARKOV MODEL(HMM)4 ADABOOST方法概述164.1引2 PAC学模164.21概述14.22数学描述音音音。音音…………………………17V工北京大学太科生业论文43弱学习强学1844BOOSTING方法5矩形特征与积分图a···············4·················4··4········‘·4······4··4······2051引言··········.·········································.···········252矩形特征 RECTANGLE FEATURE2521概述.205.22特征模版.21检器内特征总数2252.31子窗口内的条件矩形5232条件矩形的数量…52.33子窗口的特征矩形数量.2352.34结果2453积分图 INTEGRAL IMAGE25531概念含………………25532利用积分图计算矩形特征值.27V工I北京大学太科生业论文5.32.1图像区域的积分图计算.5322矩形特征的特征值计算86 ADABOOST训练算法●●●D··●·●···●●。·●·。·●●鲁·●··。·●。·●鲁。●自·鲁。●。●●b·。·●。●鲁306.1训练基本算法·●。●。·●··●●·●。鲁鲁●●b·●鲁●··●·●。。●看●。鲁●·●●香···曲鲁鲁●鲁●306.1.1基本算法描述306.12基本算法流程图3262弱分类器 WEAK CLASSIFER33621特征值f(x)62阈值q、方向指示符p38623弱分类器的训练及选取…...83强分类STRONGCLASSIFIER40631构成40632错误率上限407程序实现及结果.………4371样本集●●·●·····●···········●··············●·······●··●·●·····●··········●··········●··●··●4372练难点及优化44721计算成本14V工工T北京大学本科生毕业论文7.2.2减少矩形特征的数量……省着音自··。·非。。音音。非D音音普申普普普非非非非着44723样本预处理4573检测结果467.31检测器……46732实验结果..477321实验对比477.322更多实验结果49733结论53致谢 ACKNOWLEDGMENTS54参考文献REFERENCES54Ver o76图目录 List of Figures人脸析流程2图2人脸的遮挡、不同表情、图像的质量、旋转等等都会影响人脸检测.3图3典型的正面人脸图像数据库中的人脸图像.图4左侧为测试图像,右侧为检测结果。不同的标准会导致不同的检测结果。北京大学本科生毕业论文图5基于知识的人脸检测方法抽象出人脸的基本特征规则图6—种人脸检测模板:这个模板由16个区域(图中灰色部分)和23种区域关系(用箭头表示)组成.10图7 ROWLEY的带有图像预处理的神经网络系统…13图8人脸高斯簇和非人脸高斯簇14图9矩形特征在人脸上的特征匹配。上行是24×24子窗口内选出的矩形特征,下行是子窗口检测到的与矩形特征的匹21图10计算mXm检测器内所有可能的矩形的数量。22图11积分图与积分的类比25图12坐标A(x,y)的积分图定义为其左上角矩形所有像素之和(图中阴影部分)。s(x,y)为A(x,y)及其y方向向上所有像素之和(图中粗黑竖线)26图13区域D的像素和可以用积分图计算为:i+i-(i2+i)图14矩形特征的特征值计算,只与此特征端点的积分图有关…...9
- 2020-11-28下载
- 积分:1
-
RTL 8139網卡MAC地址永久修改
經測試RTL8139系列網卡MAC地址可以通過如上軟件及方法永久性修改,可以解決一些正版軟件通過MAC地址綁定問題,也可以突破MAC地址限制上網問題...
- 2021-05-06下载
- 积分:1
-
数据结构课程设计 用C++实现的交通咨询系统
数据结构课程设计代码,用C++实现的交通咨询系统,能实现最短距离,最省钱,最省时间3种查询。
- 2020-07-01下载
- 积分:1
-
Qt实现的FlatUI样式
对于现在做前端开发人员来说,FlatUI肯定不陌生,最近几年扁平化的设计越来越流行,大概由于现在PC端和移动端的设备的分辨率越来越高,扁平化反而看起来更让人愉悦,而通过渐变色产生的质感色彩反而没有扁平化来得亲切。Flat UI是基于Bootstrap之上进行二次开发的扁平化前端框架,他提供了动感、时尚的风格色调搭配,简洁、炫丽的功能组件,同时还提供了更为平滑的js交互动画,可以称得上前端扁平化设计框架的优秀代表之一。既然是扁平化设计框架的优秀代表,当然需要在自己项目中应用应用,Qt中的qss机制,和css极为相似,感觉就是脱胎于css,用qss来实现Qt界面样式不是一般的方便,而是相当的爽
- 2020-12-06下载
- 积分:1
-
Reinforcement Learning-An Introduction by Sutton R S,Barto A G
强化学习算法的入门资料,有利于大家学习强化学习算法
- 2020-12-09下载
- 积分:1
-
sklearn0.19中文文档
sklearn0.19中文文档 PDF格式高清。.1. 广义线性模型1.1.1. 普通最小二乘法1.1.1.1. 普通最小二乘法复杂度1.1.2. 岭回归1.1.2.1. 岭回归的复杂度1.1.2.2. 设置正则化参数:广义交叉验证1.1.3. Lasso1.1.3.1. 设置正则化参数1.1.3.1.1. 使用交叉验证1.1.3.1.2. 基于信息标准的模型选择1.1.3.1.3. 与 SVM 的正则化参数的比较1.1.4. 多任务 Lasso1.1.5. 弹性网络1.1.6. 多任务弹性网络1.1.7. 最小角回归1.1.8. LARS Lasso1.1.1.监督学习1.1.广义线性模型o1.1.1.普通最小二乘法1.1.1.1.普通最小二乘法复杂度o1.1.2.岭回归1.1.2.1.岭回归的复杂度1.1.22.设置正则化参数:广义交叉验证o 113. Lasso■1.1.3.1.设置正则化参数1.1.3.1.1.使用交叉验证■1.1.3.1.2.基于信息标准的模型选择1.1.3.1.3.与SVM的正则化参数的比较o1.1.4.多任务 Lassoo1.1.5.弹性网络o1.1.6.多任务弹性网络o1.1.7.最小角回归o.8. LARS Lasso■1.1.8.1.数学表达式o1.1.9.正交匹配追踪法(OMP)o1.1.10.贝叶斯回归1.1.10.1.贝叶斯岭回归1.1.10.2.主动相关决策理论-ARD1.1.11. logistic回归o1.1.12.随机梯度下降,SGDo1.1.13. Perceptron(感知器)o1.1.14. Passive Aggressive Algorithms(被动攻击算法)o1.1.15.稳健回归( Robustness regression):处理离群点( outliers)和模型错误1.1.15.1.各种使用场景与相关概念■1.1.15.2. RANSAC:随机抽样一致性算法( RANdomSAmple Consensus1.1.15.2.1.算法细节1.1.15.3.Thel-sen预估器:广义中值估计1.1.153.1.算法理论细节1.1.154. Huber回归1.1.155.注意1.1.16.多项式回归:用基函数展开线性模型1.2.线性和二次判别分析o1.2.1.使用线性判别分析来降维o12.2.LDA和QDA分类器的数学公式o123.LDA的降维数学公式o1.2.4. Shrinkage(收缩)o12.5.预估算法1.3.内核岭回归1.4.支持向量机o1.4.1.分类■1.4.1.1.多元分类■1.4.1.2.得分和概率1.4.1.3.非均衡问题1.4.2.回归o143.密度估计,异常( novelty)检测o1.4.4.复杂度o1.4.5.使用诀窍o1.4.6.核函数1.4.6.1.自定义核14.6.1.1.使用 python函数作为内核1.4.6.1.2.使用Gram矩阵14.6.1.3.RBF内核参数o1.4.7.数学公式1.4.7.1.sVC■1.4.7.2. NuSVo1.4.7.3.sVRo14.8.实现细节1.5.随机梯度下降o1.5.1.分类o1.5.2.回归1.5.3.稀疏数据的随机悌度下降o1.5.4.复杂度o1.5.5.实用小贴士o1.5.6.数学描述■1.5.6.1.SGDo1.5.7.实现细节1.6.最近邻o1.6.1.无监督最近邻■1.6.1.1.找到最近邻1.6.1.2. KDTree和 BallTree类1.62.最近邻分类o16.3.最近邻回归o1.6.4.最近邻算法1.64.1.暴力计算■1.6.4.2.K-D树1.64.3.Ba|树■1.6.4.4.最近邻算法的选择1.6.4.5.1 eaf size的影响o165.最近质心分类1.6.5.1.最近缩小质心1.7.高斯过程o1.7.1.高斯过程回归(GPR)o1.7.2.GPR示例1.7.2.1.具有噪声级的GPR估计1.722.GPR和内核岭回归( Kernel Ridge Regression)的比较1.7.2.3. Mauna loa co2数据中的GRRo1.7.3.高斯过程分类(GPC)o1.7.4.GPC示例1.7.4.1.GPC概率预测■1.74.2.GPC在XOR数据集上的举例说明■1.7.4.3.iris数据集上的高斯过程分类(GPC)o1.7.5.高斯过程内核1.7.5.1.高斯过程内核AP■1.7.5.2.基础内核■1.7.5.3.内核操作1.7.5.4.径向基函数内核1.7.5.5. Matern内核1.7.5.6.有理二次内核1.7.5.7.正弦平方内核1.7.58.点乘内核■1.7.5.9.参考文献o1.7.6.传统高斯过程1.7.6.1.回归实例介绍1.7.62.噪声数据拟合17.6.3.数学形式1.7.6.3.1.初始假设■1.7.6.32.最佳线性无偏预测(BLUP)1.7.6.3.3.经验最佳线性无偏估计( EBLUP)1.7.6.4.关联模型1.7.6.5.回归模型1.7.6.6.实现细节1.8.交叉分解1.9.朴素贝叶斯o1.9.1.高斯朴素贝叶斯o1.92.多项分布朴素贝叶斯1.9.3.伯努利朴素贝叶斯1.9.4.堆外朴素贝叶斯模型拟合1.10.决策树o1.10.1.分类o1.10.2.回归o1.10.3.多值输出问题o1.10.4.复杂度分析o1.10.5.实际使用技巧1.10.6.决策树算法:ID3,C4.5,c5.0和CARTo1.10.7.数学表达1.10.7.1.分类标准■1.10.7.2.回归标准1.11.集成方法o1.111. Bagging meta-estimator( Bagging元估计器)o1.11.2.由随机树组成的森林1.11.2.1.随机森林1.11.2.2.极限随机树1.11.2.3.参数1.11.24.并行化1.11.2.5.特征重要性评估1.11.2.6.完全随机树嵌入o 1.113. AdaBoost1.11.3.1.使用方法o1.114. Gradient Tree Boosting(梯度树提升)1.11.4.1.分类1.11.42.回归1.114.3.训练额外的弱学习器1.11.4.4.控制树的大小■1.11.4.5. Mathematical formulation(数学公式)■1.11.4.5.1. LoSS Functions(损失函数)1.114.6. Regularization(正则化)■1.14.6.1.收缩率( Shrinkage)■1.1.4.6.2.子采样( Subsampling)■1.11.4.7. Interpretation(解释性)1.114.7.1. Feature importance(特征重要性)1.114.7.2. Partial dependence(部分依赖)o1.11.5. Voting Classifier(投票分类器)1.115.1.多数类标等(又称为多数/硬投票)1.11.5.1.1.用法■1.11.52.加权平均概率(软投票)1.11.5.3.投票分类器( Voting Classifier)在网格搜索( Grid search)应用1.11.5.3.1.用法1.12.多类和多标签算法o1.12.1.多标签分类格式o1.12.2.1对其余1.122.1.多类学习1.122.2.多标签学习o1.12.3.1对11.12.3.1.多类别学习o1.12.4.误差校正输出代码1.12.4.1.多类别学习o1.12.5.多输出回归o1.12.6.多输出分类o1.12.7.链式分类器·1.13.特征选择1.13.1.移除低方差特征o1.13.2.单变量特征选择o1.13.3.递归式特征消除o1.13.4.使用 Select From Mode选取特征■1.13.4.1.基于L1的特征选取1.13.4.2.基于Tree(树)的特征选取1.13.5.特征选取作为 pipeline(管道)的一部分1.14.半监督学习o1.14.1.标签传播1.15.等式回归1.16.概率校准1.17.神经网络模型(有监督)o1.17.1.多层感知器o1.17.2.分类o1.17.3.回归o1.17.4.正则化o1.17.5.算法o1.17.6.复杂性o1.17.7.数学公式o1.178.实用技巧o1.17.9.使用 warm start的更多控制
- 2021-05-06下载
- 积分:1
-
libssh2_include&&lib
编译好的libssh2的库,可直接使用libssh2提供的接口,积分降低至1分,随意下载。资源存在多年,积分偶尔会改变(非本人意愿)
- 2020-12-05下载
- 积分:1
-
imdb完整数据集
包含文件imdb.npzimdb_word_index.json互联网电影资料库(Internet Movie Database,简称IMDb)是一个关于电影演员、电影、电视节目、电视明星和电影制作的在线数据库。
- 2020-07-04下载
- 积分:1