模糊控制及其MATLAB仿真.pdf
主要讲解模糊控制理论在MATLAB系统的中的应用前言自动控制理论经历了经典控制和现代控制两个重大发展阶段,已经相当完善。然而,对于许多复杂庞大的被控对象及其外界环境,有时难以建立有效的数学模型,因而无法采用常规的控制理论做定量分析计算和进行控制,这时就要借助于新兴的智能控制。智能控制是人工智能、控制论和运筹学相互交叉渗透形成的新兴学科,它具有定量和定性相结合的分析方法,融会了人类特有的推理、学习和联想等智能。模糊控制是在智能控制中适用面宽广、比较活跃且容易普及的一个分支。人类在感知世界、获取知识、思维推理、相互交流及决策和实施控制等诸多的实践环节中,对知识的表述往往带有“模糊性”的特点,这使得所包含的信息容量有时比“清晰性”的更大,内涵更丰富,也更符合客观世界。1965年美国的控制论专家L.A. Zadeh教授创立了模糊集合论,从而为描述、硏究和处理模糊性事物提供了一种新的数学工具。模糊控制就是利用模糊集合理论,把人的模糊控制策略转化为计算机所能接受的控制算法,进而实施控制的一种理论和技术。它能够模拟人的思维方式,因而对一些无法构建数学模型的系统可以进行有效的描述和控制,除了用于工业,也适用于社会学、经济学、环境学、生物学及医学等各类复杂系统。由于模糊控制应用广泛、便于普及,不仅许多高等学校开设了模糊控制课程,而且不少工程技术人员也渴望了解和学习这方面的知识。集作者多年从事“模糊信息处理”、“模糊控制”方面的科研和教学经验,编写了这本模糊控制方面的入门书。本书在选材、安排上均遵从“入门”和“实用”的原则,着重介绍模糊控制的基本概念、基本原理和基本方法。本着“重视实用性和可操作性”的工程教育思想,内容选取和叙述形式不追求“理论的高深和数学推导的严谨”,在学术性和实用性发生冲突时,学术性服从实用性。本书主要内容包括模糊控制的数学和逻辑学基础、模糊控制器的设计、模糊控制系统的仿真及神经网络在模糊控制中的应用。在介绍模糊控制的理谂时,按照模糊控制的需要介绍必要的基础理论和基本知识,而不是把模糊控制仅仅看作模糊理论的一种应用,片面追求模糊理论的系统性和完整性,致使读者在模糊数学和模糊逻辑的演算上花费很多精力。在介绍模糊规则的生成方法时,不仅介绍了根据操作经验建立规则的常用方法,而且通过实例介绍了从系统的输入、输出数据中获取模糊规则的方法在介绍模糊控制器时,集中介绍了实用范围较广的两种类型模糊控制器:Maπdani型和 Sugeno型。前一种模糊控制器的输λ量和输出量都是模糊子集,输出量需要经过清晰化才能用于执行机构;而后一种模糊控制器的输入量是模糊子集,输岀量为数字量,可以直接用于推动执行机构考虑到科技工作者学习模糊控制理论时需要实践及其实际需求,把模糊控制理论和计算机仿真进行了有机融合,较详细地介绍了 MATLAB仿真技术及其在模糊控制方面的应用通过仿真练习,弥补了学习理论过程中难以实践的缺陷,加深对模糊控制的理解,也使在解WW. 9CAX COI决实际问题时有所借鉴,为进一步深入学习和应用模糊控制理论打下良好的基础。神经网络是智能控制的一个重要分支,本书简要介绍了它在模糊控制中的应用,着重举例介绍了 MATLAB中“自适应神经模糊系统”的使用方法。本书配有教学课件,可从北京交通大学出版社网站下载,或发邮件至 cbswce( jg.bitu.edu.cn或aushi@126.com索取。吴嫦娥编辑对本书的出版起了极大的推动作用,在此深表谢意!由于模糊控制领域的理论目前尚不成熟,还存在许多未解难题,虽然作者在“模糊领域”有十余年的科研教学经验,但毕竟水平有限,恳请广大读者不吝赐教!编者(E mail: aushixm(a 126. com)2008年3月WW. 9CAX COI目录第1章引言………………………………………………………(1)1.1自动控制理论的发展历程……………………………………………………(1)1.2智能控制概况………………(2)1.2.1智能控制的发展简况………………………………………………………………(2)1.2.2智能控制的几个重要分支…1.3模糊控制,,,,,.,,,………(6)1.3.1模糊控制解决的问题…(7)1.3.2模糊控制的发展简史…………………………………………………………(7)1.3.3模糊控制的特点及展望…(9)思考与练习题………………………………………………………………………(10)第2章模糊控制的数学基础……………………………………………………(11)2.1清晰向模糊的转换·(11)2.1.1经典集合的基本概念………………………………………………………………(11)2.1.2模糊集合………………………………………………………………(14)2.2隶属函数…………………………………………………………………………………(22)2.2.1确定隶属函数的基木方法…………………………………………………(23)2.2.2常用隶属函数2.3F集合的运算………………………………………………(26)2.3.1F集合的基本运算………………………………………………(26)2.3.2模糊集合的基本运算规律………………………………………………………(29)2.3.3F集合运算的其他定义………………………………………………………(31)2.4模糊关系及其运算……………………………………………………………(32)2.4.1经典关系……(32)2.4.2模糊关系………………………………………………………………(34)2.4.3模糊关系的运算…………………………………………………………………(382.4.4F关系的合成…………………………………(40)2.5模糊向清晰的转换…………………………………………………………(45)2.5.1模糊集合的截集………………………………………………………(45)2.5.2模糊关系矩阵的截矩阵…(47)2.5.3模糊集合转化为数值的常用方法…(47)思考与练习题………………………………………………………………………(51)第3章模糊控制的逻辑学基础……………………………………………………………(53)3.1二值逻辑简介……………………………………………………………………(53)1判断WW. 9CAX COI3.1.2推理……………………………………………………………………(58)3.2自然语言的模糊集合表示……………………………………………………(59)3.2.1一些自然词语的F集合表示……………(59)3.2.2糢糊算子…………………………………………………………………(60)3.3模糊逻辑和近似推理……………(63)3.3.1模糊命题……………………………………………………(64)3.3.2常用的两种基本模糊条件语句…………………………………………………(65)3.3.3近似推理及其合成法则…(74)3.4T-S型模糊推理…………………………………………………………(81)3.4.1双输入、单输出系统的T-S型糢糊推理模型…………………………………(81)3.4.2MISO系统的TS模型………………………………………………………………(85)思考与练习题…(87)第4章模糊控制器的设计………………………………………(89)4.1模糊控制系统的基本组成………………(89)4.1.1从传统控制系统到模糊控制系统…………………………………………………(89)4.1.2模糊控制器的结构………………………………………………………………(92)4.2 Mamdani型模糊控制器的设计…(93)4.2.1 Mamdani型模糊控制器的基本组成…………(93)4.2.2量化因子和比例因子……………………………………………(94)4.2.3模糊化和清化……………………………………………………(98)4.2.4模糊控制规则……………………………………………………………………(102)4.2.5模糊自动洗衣机的设计…………………………(113)4.3T-S型模糊控制器的设计…(117)1.3.1T-S型模糊模型(118)4.3.2T-S型模糊系统设计要点………………………………………………………(121)4.4F控制器和PID控制器的结合…(121)4.4.1F-PID复合控制器……………………………(121)4.4.2F-PID复合控制器的其他形式………(122)4.4.3用模糊控制器调节PID控制器的参数………………………………(123)思考与练习题……………………………………………………………………………(125)第5章模糊控制系统的 MATLAB仿真…………………………………(127)5.1 Simulink仿真入门……………………………………………(127)5.1.1 MATLAB中的仿真模块库…………………………………………(128)5.1.2仿真模型图的构建……………………………………………………(135)5.1.3动态系统的 Simulink仿真……5.2模糊推理系统的设计与仿真………(149)5.2.1模糊推理系统的图形用户界面简介·..···,····,·············………(149)5.2.2模糊推理系统编辑器…………………………………………………………(150)2.3隶属函数编辑器…(156)WW. 9CAX COI5.2.4模糊规则编辑器…(161)5.2.5模糊规则观测窗…………(172)5.2.6FIS输出量由面观测窗………(179)5.2.7用GUI设计 Mamdani型模糊系统举例……………………………………(182)5.2.8用GUI设计 Sugeno型模糊系统举例……………………………………(189)5.3模糊控制系统的设计与仿真…………………………………………………(196)5.3.1FIS与 Simulink的连接………………………………………………………(196)5.3.2构建模糊控制系统的仿真模型图…(200)5.3.3通过仿真对系统进行分析……………………………………………(208)考与练习题……………………………………………………………………………………(218)第6章神经网络在模糊控制中的应用……………………………………………(219)6.1神经网络的基本原理…(219)6.1.1神经网络发展历史…(219)6.1.2神经元的生理结构……………………………………………(221)6.1.3神经元的数学模型…………………………………………………………(222)6.1.4人工神经网络模型…………………………………………………………(224)6.1.5神经网络模型的学习方法……(225)6.1.6BP型神经网络原理简介……………………………(227)6.2神经模糊控制……着,,,着……………(228)6.3用自适应神经模糊系统建立FIS…………………………………………(229)6.3.1 ANFIS图形用户界面简介,,,,·,.,··.,,.,·,·,着,,里,,,,,,·,,··,,,·,.·,·,,·(229)6.3.2用 Anfis建立FIS的步骤…………………………………………(233)6.3.3用 Anfis建立FIS举例……………………………………………………(245)思考与练习题(255)参考文献………………………………………………………………………………(256)ⅢlWW. 9CAX COI第1章引言本章介绍自动控制学科发展的历史概况,叙述从开环控制到智能控制的发展进程,并简单介绍智能控制的几个主要分支——专家控制、模糊控制和神经网络控制1.1自动控制理论的发展历程自动控制就是在没有人直接参与的情况下,利用外加的设备或装置(控制器),使机器、设备或生产过程(被控对象)的某个工作状态或参数(被控量),能够自动地按照设定的规律或指标运行的设备或系统。自从美国数学家维纳在20世纪40年代创立控制论以来,自动控制从最早的开环控制起步,然后是反馈控制、最优控制、随机控制,再到自适应控制、自学习控制、自组织控制,直发展到自动控制的最新阶段——智能控制。整个自动控制理论的发展进程,是由简单到复杂、由量变到质变的辩证发展过程,如图1-1所示。智能控制但会买继智能控制自学习控制自适应控制,鲁棒控制现代控随机控制最优控制确定性反馈控制开环控制控制系统的复杂性图1-1控制科学的发展过程传统控制理论经历过经典控制理论和现代控制理论两个具有里程碑意义的重要阶段,它们的共同点都是基于被控对象的清晰数学模型,即控制对象和干扰都得用严帑的数学方程和函数表示,控制任务和目标一般都比较直接明确,控制对象的不确定性和外界干扰只允许在很小的限度内发生个系统的数学模型就是对系统运动规律的数学描述,微分方程、传递函数和状态方程是描述控制系统的三种最基本的数学模型,其中微分方程是联系其他两者的纽带。经典控制理论主要研究单变量、常系数、线性系统数学模型,经常使用传递函数为基础的频域分析法;现代控制理论主要研究多输入-多输出线性系统数学模型,经常使用微分方程或状态方WW. 9CAX COI模糊控制及其 MATLAB仿真程为基础的时域分析法。传统控制方法多是解决线性、时不变性等相对简单的被控系统的控制问题,这类系统完全可以用线性、常系数、集总参量的微分方程予以描述。但是,许多实际的工业对象和控制目标常常并非都是如此理想,特别是遇到系统的规模庞大、结构复杂、变量众多,加之参数随机多变、参数间又存在强耦合或系统存在大滞后等错综复杂情况时,传统控制理论的纯粹数学解析结构则很难表达和处理。由于硏究对象和实际系统具有非线性、时变性、不确定性、不完全性或大滞后等特性,无法建立起表述它们运动规律和特性的数学模型,于是便失去了进行传统数学分析的基础,也就无法设计出合理的理想经典控制器。况且,在建立数学模型时一般都得经过理想化假设和处理,即把非线性化为线性,分布参数化为集中参数,时变的化为定常的,等等。因此,数学模型和这些实际系统的巨大差距,使之很难对其实现有效的传统自动控制,于是便出现了某些仿人智能的工程控制与信息处理系统,产生和发展了智能控制大量的生产实践表明,有许多难以建立数学模型的复杂系统和繁难工艺过程,可以由熟练技术工人、工程师或专家的手工操作,依靠人类的智慧,能够获得满意的控制效果。例如,欲将一辆汽车倒入指定的车位,确实无法建立起这一过程的数学模型。然而熟练的司机却可以非常轻松地把它倒入预定的位置。类似的问题使人们自然想到,能否在传统控制中加人人类的认知、手工控制事物的经验、能力和逻辑推理等智能成分,充分利用人的操作技巧、控制经验和直觉推理,把人的因素作为一个有机部分融入控制系统呢?能否根据系统的实际输入、输出类似于熟练技工那样进行实时控制,甚至使机器也具有人类的学习和自适应能力,进而用机器代替人类进行复杂对象和系统的实时控制呢?1.2智能控制概况20世纪60年代以来,由于空间技术、计算机技术及人工智能技术的发展,控制界学者在研究自组织、自学习控制的基础上,为了提高控制系统的自学习能力,开始注意将人工智能技术与方法应用于工程控制中,逐渐形成了智能控制。1.2.1智能控制的发展简况所谓智能控制,就是通过定性和定量相结合的方法,针对被控对象和控制任务的复杂性、不确定性和多变特性,有效自主地实现繁杂信息的处理、优化和判断,以致决策,最终达到控制被控系统的目的。智能控制的诞生1966年,J.M. Mendal首先提出将人工智能技术应用于飞船控制系统的设计;其后,1971年,美籍华人科学家傅京逊首次提岀智能控制这一概念,并归纳了三种类型的智能控制系统①)人作为控制器的控制系统:这种控制系统具有自学习、自适应和自组织的功能。②人-机结合作为控制器的控制系统:机器完成需要连续进行的、快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。③无人参与旳自主控制系统:用多层智能控制系统,完成问题求解和规划、环境建模、WW. 9CAX COI第1章引言传感器信息分析和低层的反馈控制任务,如自主机器人。1985年8月,美国电机及电子工程师学会( Institute of Electrical and Electrical Enginers,IEEE)在纽约召开了第一届智能控制学术讨论会,随后成立了智能控制专业委员会;1987年1月,在美国举行第一次国际智能控制大会,标志着智能控制领域的形成。智能控制即含有人类智能的控制系统,它具有学习、抽象、推理、决策等功能,并能根据环境(包括被控对象或被控过程)信息的变化做岀适应性反应,从而使机器能够完成以前只能由人可以完成的控制任务。2.智能控制的三元论智能控制是一门交叉学科,傅京逊教授于1971年首先提出智能控制( Intelligent Control,IC)是人工智能与自动控制的交叉,即智能控制的二元论。在此基础上,美国学者G.N. Saridis于1977年引入运筹学,提出了三元论的智能控制概念,认为智能控制是人工智能( Artificial Intelligence,AⅠ)、自动控制( Automatic control,AC)和运筹学(Operational research,OR)等形成的交叉学科,即IC=AI∩AC∩OR,它们的含义如下:信号处理、形式语言AI—人工智能,是一个用来模拟人启发推理规划、调度、管理类思维的知识处理系统,具有记忆、学习、人工智能运筹学信息处理、形式语言、启发推理等功能学习、记忆可以应用于判断、推理、预测、识别、决智能控制协调、管理策、学习等各类问题;AC自动控制,描述系统的动力学自动控制特性,实现无人操作而能完成预设目标的一优化、动力学、动态反馈种理论体系,一般具有动态反馈功能;OR—运筹学,是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等。图1-2智能控制的三元论示意图基于三元论的智能控制概念如图1-2所示。现在,为多数人所接受的三元论智能控制概念,除了“智能”与“控制”外,还强调了更高层次控制中的调度、规划和管理作用,为分层、递阶智能控制提供了理论依据。3.智能控制的特点在分析方法上具有定量与定性相结合的智能控制,应该具有以下一些功能。1)学习功能智能控制器能通过从外界环境所获得的信息进行学习,不断积累知识,使系统的控制性能得到改善。2)适应功能智能控制器具有从输入到输岀的映射关系,可实现不依赖于模型的自适应控制,当系统某一部分出现故障时,仍能进行控制。WW. 9CAX COI
- 2020-06-01下载
- 积分:1
SAR雷达成像点目标仿真——RD算法和CS算法(程序+注释)
SAR雷达成像点目标仿真,包含RD算法和CS算法的原理+Matlab程序,程序每一行均有注释,适合入门以τ的时闫发射啁啾脉冲,然后切换天线开关接收回波信号。脉冲重复间隔为l发接收图雷达发射脉冲串的时序当雷达不处于发射状态时,它接收反射回波。发射和接收回波的时间序列如图所示在机载情况下,每个回波可以在脉冲发射间隔内直接接收到。但是在星载情况下,由于距离过大,某个脉冲的回波要经过个脉冲间隔才能接收到。这里仿真为了方便,默认为机载情況脉冲回波时间图脉冲雷达的发射与接攻周期假设为信号持续时间,下标表示距离向:为重复频率,为重复周期,等于。接收序列中,τ衣示发射第个脉冲时,目标回波相对于发射序列的延时。雷达的发射序列数学表达式为式式中,表示矩形信号,为距离向的信号调频率,为载频。雷达回波信号由发射信号波形,天线方向图,斜距,目标,环境等因素共同决定,若不考虑环境因素,则单点目标雷达回波信号可写成式所示:其中,G表示点目标的雷达散射截面,表示点目标天线方向图双向幅度加权,z表示载机发射第个脉冲时,电磁波再次回到载机时的延时r,带入式中得式就是单点目标叵波信号模型,其中,是分量,它决定距离向分辨率;为多普勒分量,它决定方位向分辨率对于任意一个脉冲,回波信号可表小为式所小我们知道,由于随慢时间的变化而变化,所以计算机记录到的回波数据存储形式如图所示:贴棘·●鲁通ib●幽●中@中●●●。●●鲁●●ed●●i●●一●●:b●t老!y·●●●●●Outuinh0ib●●●●·:·:·;D●●中·!达脉冲长度斜距(军样数或单元置)图目标照射时间内,单个点目标回波能量在信号处理器的二维存储器中的轨迹4距离徙动及校正根据图可知,在倾斜角为零或很小的时侯,目标与雷达的瞬时距离为,根据几何关系可知,,根据泰勒级数展开可得:由式可知,不同慢时间对应着不同的并且是一个双曲线形式或者近似为个二次肜式。如图所示,同一目标的回波存储在计算机里不在同一直线上,存在距离徙动从而定义距离徙动量:为了进行方位向的压缩,方位向的回波数据必须在同一条直线上,也就是说必须校止距离徙动Δ。由式()可知,不同的最近距离对应着不同的▲,因此在时域处理距离徙动会非常麻烦。因此,对方位向进行傅里叫变换,对距离向不进行变换,得到新的域。由于方位向的频率即为多普勒频率,所以这个新的域也称为距离多普勒域将斜距写成多普勒的函数,即。众所周知,对最近距离为的点目标回波多普勒是倾斜角b的函数,即=2,斜距,于是6:≈所以距离多普勒域中的我距离徙动为Δ,可发现它不随慢时间变换同一最短距离对应着相同大小的距离徙动。因此在距离多普勒域对一个距离徙动校正就是对一组具有相同最短距离的点目标的距离徙动校止,这样可以节省运算量。为了对距离徙动进行校正,需要得到距离徙动单元,即距离徙动体现在存储单元中的移动数值,距离徙动单元可以表示为△这个值通常为一个分数,由于存储单元都是离散的,所以不同通过在存储单元简单的移动得到准确的值。为了得到准确的徙动校正值,通常需要进行插值运算。本仿真釆用了两种插值方法最近邻点插值和插值,下面分别进行介绍。最近邻点插值法的优点是简单而快速,缺点是不够精确。Δ其中为整数部分为小数部分,整数部分徙动可以直接通过平移消除,对于小数部分则通过四舍五入的方法变为或者,这样就可以得到较为精确的插值插值原理如下:在基带信号下,卷积核是函数插值信号为即为所有输入样本的加权平均。可通过频域来理解,如图所示,采样信号频普等于以采样率重复的信号频谱。为了重建信号,只需要一个周期频谱(如基带周期),因此需要理想矩形低通滤波器在频域中提取基带频谱(如图)所示。凵知该理想滤波器在时域中是函数。由于频域相乘相当于时域卷积,故插值可以通过与核的卷积来实现信号频谱幅度理想低通滤波器-101频率图理憇低通滤波器怎样对采样信号进行插值5点目标成像 matlab仿真5.1距离多普勒算法距离多普勒算法(是在年至年为民用星载提出的,它兼顾了成熟、简单、髙效和精确等因素,至今仍是使用最广泛的成像算法。它通过距离和方位上的频域操作,到达了高效的模块化处理要求,同吋又具有了一·维操作的简便性。图示意了的处理流程。这里主要讨论小倾斜角及短孔径下的基本处理框当数据处在方位时域时,可通过快速卷积进行距离压缩。也就是说,距离后随即进行距离向匹配滤波,再利用距离完成距离压缩。回波信号为:距离向压缩后的信号为:通过方位将数据变换至距离多普勒域,多普勒中心频率估计以及大部分后续操作都在该域进行。方位向傅里叶变换后信号为:在距离多普勒域进行随距离时间及方位频率变化的,该域中同距离上的组日标轨迹相互重合。将距离徙动曲线拉直到与方位频率轴平行的方向。这里可以采用最近邻点插值法或者插值法,具体插值方法见前面。假设插值是精确的,信号变为:通过每一距离门上的频域匹配滤波实现方位压缩。为进行方位压缩,将后的乘以频域匹配滤波器最后通过方位将数据变换回时域,得到压缩后的复图像。复原后的图像为:正达原始教据距离压缩方位向傅里叶变换距离徙动校正方位压方位向傅里叶逆变及多视叠加压缩数据图距离多普勒算法流程图5.2 Chirp Sca l ing算法距离多普勒算法具有诸多优点,但是距离多普勒算法有两点不足:首先,当用较长的核函数提高距离徙动校正()精度时,运算量较大:其次,二次距离压缩()对方位频率的依赖性问题较雉解决,从而限制了其对某些大斜视角和长孔径的处理精度。算法避免」中的插值操作,通过对信号进行频率调制,实现了对该信号的尺度变换或平移图显示了算法处理流程。这里主要讨论小倾斜角及短孔径下的基本处理框图。主要步骤包括四次和三次相位相乘。通过方位向将数据变换到距离多普勒域。通过相位相乘实现操作,使所有目标的距离徙动轨迹·致化。这是第步相位相乘。用以改交线调频率尺度的二次相位函数为通过距离向将数据变到二维频域。通过与参考函数进行相位相乘,同吋完成距离压缩、和‘致这是第二步相位相乘。用于距离压缩,距离徙动校正的相位函薮写为:通过距离向将数据变回到距离多普勒域。通过与随距离变化的匹配滤波器进行相位相乘,实现方位压缩。此外,由于步骤中的操作,相位相乘中还需要附加一项相位校正。这是第三步相位相乘。补偿由引起的剩余相位函数是:最后通过方位向将数据变回到二维时域,即图像域雷达原始数据SAR信号域方位向傅里叶变换第一步相位相乘补余RCMC中的距离多Chirp sealing操作普勒域距离向傅里叶变换第一步相位相乘参考函数相乘用于距离压细、SRC和一致RCMC频域距离向傅里叶逆变美第三步(最后方位压缩及相位校王步)相位相乘距离多晋勒域方位向傅里叶道变换SAR图像域压缩数据图算法流程图简而言之,算法是将徙动曲线逐一校正,算法是以某一徙动曲线为参考,在域内消除不同距离门的徙动山线的差异,令这些曲线成为一组相互平行的曲线,然后在二维频率域內统一的去掉距离徒动。通俗一点就是,算法是将弯曲的信号一根根矫直,而算法是先把所有信号都掰得一样弯,然后再统一矫直。6仿真结果6.1使用最近邻点插值的距离多普勒算法仿真结果本文首先对个点目标的回波信号进行了仿真,个点目标构成了矩形的个顶点和中心,其坐标分别如下,格式为(方位向距离向后向反射系数):图的上图是距离向压缩后的图像,从图中可以看到条回波信号(其中有几条部分重合,但仍能看出米)目标回波信号存在明显的距离徙动,需要进行校正。图的下图是通过最近邻点插值法校正后的图像,可以看出图像基本被校正为直线。配萬向压缩,未交正距离徒动的图像距高可距离压缩,权E距高徒动日的图像L图距离向压缩后最近邻点插值的结果图为进行方位向压缩后形成的图像,可以明显看出个点日标,并且个点日标构成了矩形的四个顶点及其中心。方位向压缩后的图像图通过最近邻点插值生成的点目标图像6.2使用最近邻点插值的距离多普勒算法仿真结果图上图为通过距离压缩后的图像,图的下图为通过插值法校止后的图像。距离甸压缩,未校正距离徙动的图像距离向距离向压缩,校止离徙动后的图像距离向图距离向压缩后插值的结果图为进行方位向压缩后形成的图像,可以明显看出个点目标,并且个点目标构成了矩形的四个顶点及其中心。方位向缩后的图像图通过插值生成的点目标图像6.3 Chirp Scal ing算法仿真结果可样,在中,对个点目标的回波信号进行了仿真,个点目标构成了矩形的个顶点和中心,其坐标分别如下,格式为(方位向距离向后向反射系数):
- 2020-12-05下载
- 积分:1