登录
首页 » Others » 电脑辅助工程分析ANSYS使用指南

电脑辅助工程分析ANSYS使用指南

于 2021-08-10 发布
0 131
下载积分: 1 下载次数: 1

代码说明:

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 学生考勤管理系统源代码
    学生考勤管理系统,实现学生的考勤情况,包括记录学生缺课情况,查询、修改、删除学生缺课记录以及统计某时间段内旷课情况
    2020-12-05下载
    积分:1
  • ttf16.ocx 6.1.62支持win10
    打印控件最新版支持win10 修复数据保护报错 1321153465464
    2021-05-06下载
    积分:1
  • Lectures on Stochastic Programming-Model
    这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way
    2020-12-09下载
    积分:1
  • OpenGL + freeglut + glew + glm 環境配置
    http://blog.csdn.net/j0939115399/article/details/74656672
    2020-12-08下载
    积分:1
  • 研究生英语学术论文写作PPT课件
    2020年东南大学研究生英语课(学术英语写作)配套教材《研究生英语学术论文写作》的配套PPT,方便复习和学习。
    2021-05-06下载
    积分:1
  • pscad 同步发电机模型
    pscad 同步发电机模型 下垂特性
    2020-11-28下载
    积分:1
  • 经典DOA估计GSC(旁瓣相消算法)算法
    直接建立了信号模型(包括信号输入和干扰信号,噪声信号),可直接运行的GSC算法。
    2020-12-06下载
    积分:1
  • 大学生就业咨询系统(C#源码)
    C#开发的大学生就业咨询系统,供有需求的朋友下载。很好的代码,所以分值有点高。
    2020-11-30下载
    积分:1
  • MATPOWER中文手册
    MATPOWER 是一个基于matlab m 文件的组建包,用来解决电力潮流和优化潮流的问题。它致力于为研究人员和教育从业者提供一种易于使用和可更新的仿真工具。Matpower的设计理念是用尽可能简单、易懂,可更新的代码来实现最优秀的功能。
    2020-12-02下载
    积分:1
  • TMS320C6678开发板历
    TMS320C6678开发板历程,内含CCS5.3软件使用入门广州创龙电子刑技有限公司Guangzhou Tron ong Electronic Technology co, LtdTron添加基于的软件中断(有条件触发)例程添加基于的软件中断(有条件触发)例程。添加基于的软件中断(无条件触发)例程基于裸机的输出(灯)例程。基于裸机的输入(按键中断)例程基于裸机的串口査询收发例程添加基于平台库的总线测试例程。添加基于平台库的风扇控制例程。添加基于平台库的按键状态查询例程。添加基于平台库的灯控制例程。添加基于平台库的总线读写例程。添加基于平台库的总线温度传感器例程添加基于平台库的内存读写例程。添加基于平台库的总线测试例程。添加基于平台库的串口查询收发例程。添加不使用操作系统工程模板。添加基于操作系统(是依赖的平台组件)工程模板。广州创龙电子刑技有限公司Guangzhou Tron ong Electronic Technology co, LtdTron目广州创龙电子刑技有限公司Guangzhou Tron ong Electronic Technology co, LtdTron目录基于仿真器的程序加载与烧写查看仿真器是否安装成功设置工程配置文件信息加载文件连接开发板加载程序镜像文件烧写程序到工程新建、编译和导入裸机工程新建新建工程编写程序编详和运行程序工程新建新建平台新建工程工程导入和编译步骤开启多线程编译算法例程演示-有限长单位冲激响应滤波器无限脉冲响应数字滤波器—快速傅甲叶变换逆变换图像离散余弦变换图像转灰度边缘检测灰度图像直方图灰度图像二值化图像旋转广州创龙电子刑技有限公司Guangzhou Tron ong Electronic Technology co, LtdTron图像缩放图像反色直方图均衡化灰度图像线性变换一数学函数库一矩阵运算基于的例程演示时钟任务抢占式多任务一静态创建任务定时器(通用)定时器(专用)定时器(动态创建)硬件中断(设备专用组件)硬件中断(挂钩函数)硬件中断(中断嵌套)硬件中断()硬件中卷(发布软件中断)硬件中断(铀发任务)内存分配软件中断(静态配置)一软件中断()一软件中断(有条件触发软件中断(有条件触发钦件中断(无条件触发)裸机开发例程演示输出(灯)广州创龙电子刑技有限公司Guangzhou Tron ong Electronic Technology co, LtdTron输入(按键中断)串口查询收发基于平台库例程演示总线测试一风扇控制按键状态耷询灯控制总线读写6.6总线温度传感器测试内存读写测试总线测试6.9串口查询收发工程模板7.1不使用操作系统使用 SYSBIO0S操作系统附录广州创龙电子刑技有限公司Guangzhou Tron ong Electronic Technology co, LtdTron备注●如实验无特别说明,默认都是使用作为调试串口●如实验无特别说明,表示广州创龙系列(包含)开发板均攴持对应实验,厂州创龙系列开发板共用此用户手册,由于各个开发板之问的硬件资源在差异,因此有部分实验需要在特定的开发板上完成。基于仿真器的程序加载与烧写11查看仿真器是否安装成功如下的廾发,均以仿真器为例。开发板断电,连接好仿真器和开发板,并将仿真器的口捕进电脑插槽,开发板上电。冇击计算机图标,点击“设备通用串行总线控制器”或者“设备端口”,查看是否有对应的仿真器的选项出现,如有说明仿真器驱动已经正常安装,否则请先正确安装设备管理器文件(操作(A)查看帮(H伞中回国|区回bWSD打印提头程同便携设备围传器磁动器p打印队列满口COM和LPg XDW XDS2xox Uscr CDC Scrial Port(COM15监视人体学输入设备声合。视礼游空制聶邑图广州创龙电子刑技有限公司Guangzhou Tron ong Electronic Technology co, LtdTron集成开发环境自带及系列仿真器驱动。如果仿真器无法正常使用,请检查是否存在驱动冲突,系列仿真器使用芯片,请检查是否与已经安装使用的转串口驱动冲突,如使用仿真器,请检查计算机中是否正确安裝转串口驱动或者尝试重新装计算机主板芯片组驱动12设置工程配置文件信息请先按照相关软件安装文档安装然后打开集成开发环境,点击菜单,如下图所示:File Edit View Mavigate Project Run ScriptsWindow HelpNewAHt+ShH+Np會 CCs Pro ectCluseCurl+W3Suurte FieClose allCtrl+Shift+wh Header FleCSaveCtrl+cOClassT Hile from TemplateSave All匚tr- shift+S9 DS2/BICS V5.x Configuration File盛 RTSC Ccntiguraticn FilcC OtherCtrl-Ne Refresh图在弹出的界面中输入工程配置文件名字,然后点击如下图所示广州创龙电子刑技有限公司Guangzhou Tron ong Electronic Technology co, LtdTronN New Target ConfigurationI arget Configurati。nCreate a new Target Configuration fileFile name: New TargetConfigurationccxml回 Use shared locationLocation: C /Users/asus/ti CCSTargetConfigurations File System. V/crks pace.上Fh[ca图在弹出的对话框的下拉框中选择对应的仿真器类型(如使用仿真器请选择下拉框中选择对应的型号,如下图所示:Advanced SetupThis =action descrihes th= general config ration ah
    2020-12-07下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载