登录
首页 » MATLAB » lmmse信道估计

lmmse信道估计

于 2021-07-25 发布
0 244
下载积分: 1 下载次数: 3

代码说明:

采用lmmse算法实现信道估计过程

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 鲸鱼优化算法
    鲸鱼优化算法,群智能优化算法
    2020-12-11下载
    积分:1
  • 《无人驾驶车辆模型预测控制》书中Carsim和MATLAB原书配套代码(全)
    【实例简介】无人驾驶代码
    2021-06-14 00:31:27下载
    积分:1
  • 简单体制雷达仿真(simple_system_radar.m)
    简单体制雷达仿真(simple_system_radar.m)
    2021-05-07下载
    积分:1
  • APAP(As Projective As Possible)视差鲁棒的图像拼接算法
    论文《As-Projective-As-Possible Image Stitching with Moving DLT》中的拼接算法,对于视差图像拼接具有一定的鲁棒性,但是对特征点数量及其分布均匀性有较高的要求。 The success of commercial image stitching tools often leads to the impression that image stitching is a “solved problem”.The reality, however, is that many tools give unconvincing results when the input photos violate fairly restrictive imaging assumptions;the main two being that the photos correspond to views that differ purely by rotation, or that the imaged scene is effectively planar.Such assumptions underpin the usage of 2D projective transforms or homographies to align photos. In the hands of the casual user,such conditions are often violated, yielding misalignment artifacts or “ghosting” in the results. Accordingly, many existing imagestitching tools depend critically on post-processing routines to conceal ghosting. In this paper, we propose a novel estimationtechnique called Moving Direct Linear Transformation (Moving DLT) that is able to tweak or fine-tune the projective warp toaccommodate the deviations of the input data from the idealized conditions. This produces as-projective-as-possible image alignmentthat significantly reduces ghosting without compromising the geometric realism of perspective image stitching. Our technique thuslessens the dependency on potentially expensive postprocessing algorithms. In addition, we describe how multipleas-projective-as-possible warps can be simultaneously refined via bundle adjustment to accurately align multiple images for largepanorama creation.
    2020-11-30下载
    积分:1
  • 室内定位算法合集
    卡尔曼滤波 粒子滤波等等 【源码目录】 bachelor-project-master ├── KalmanFilter │   ├── kf_initialization.m │   ├── kf_params.m │   ├── kf_plots.m │   ├── kf_prediction.m │   └── kf_update.m ├── LICENSE ├── Multilateration │   ├── lateration_murphyHerman.m │   ├── lateration_paulaAnaJose.m │   ├── lateration_plot.m │   └── lateration_weightedMurphyHerman.m ├── ParticleFilter │   ├── R2d.m │   ├── initialise_particles.m │   ├── motion_model.m │   ├── observation_model.m │   ├── plot_particles.m │   └── resampling.m ├── README.md ├── SignalModel │   ├── inv_path_loss_model.m │   └── path_loss_model.m ├── build_map.m ├── common.m ├── kf_main.m ├── lateration_main.m ├── osm │   ├── LICENSE │   ├── README.md │   ├── assign_from_parsed.m │   ├── debug_openstreetmap.m │   ├── dependencies │   │   ├── gaimc │   │   │   ├── dijkstra.m │   │   │   └── sparse_to_csr.m │   │   ├── hold │   │   │   ├── restorehold.m │   │   │   └── takehold.m │   │   ├── lat_lon_proportions │   │   │   └── lat_lon_proportions.m │   │   ├── plotmd │   │   │   └── plotmd.m │   │   ├── textmd │   │   │   └── textmd.m │   │   ├── xml2struct │   │   │   └── xml2struct_fex28518.m │   │   └── xml2struct.m │   ├── extract_connectivity.m │   ├── extract_sensors.m │   ├── get_unique_node_xy.m │   ├── get_way_tag_key.m │   ├── load_osm_xml.m │   ├── main_mapping.m │   ├── parse_openstreetmap.m │   ├── parse_osm.m │   ├── plot_nodes.m │   ├── plot_road_network.m │   ├── plot_route.m │   ├── plot_way.m │   ├── route_planner.m │   ├── show_map.m │   └── usage_example.m ├── pf_main.m ├── standalone │   ├── KalmanFilter │   │   ├── KF1D.m │   │   └── KF2D.m │   ├── Lateration │   │   ├── MurphyHerman.m │   │   ├── PaulaAnaJose_v1.m │   │   ├── PaulaAnaJose_v2.m │   │   ├── Trilateration.m │   │   ├── WeightedMultilaterationLLS.m │   │   └── WeightedMurphyHerman.m │   ├── ParticleFilter │   │   ├── particle_filter_sd_2d.m │   │   └── particle_filter_student_dave_basic_ex1.m │   └── misc │       ├── NearestNeighbor.m │       ├── ProjectPointOnSegment.m │       └── WeightedMultilaterationLLS.m └── utils     ├── R2d.m     ├── cart2geo.m     ├── convert2Cartesian.m     └── geo2cart.m 18 directories, 69 files
    2021-06-10 00:31:06下载
    积分:1
  • 7.2 于线性预测的音合成实验 matlab
    【实例简介】
    2021-07-31 00:31:09下载
    积分:1
  • SVM回归代码
    SVM回归代码
    2020-12-06下载
    积分:1
  • CFAR
    CFAR
    2020-05-14下载
    积分:1
  • matlab车牌识别
    【实例简介】
    2021-06-05 00:31:11下载
    积分:1
  • sift特征检测代码
    【实例简介】sift代码详细注释可直接运行
    2021-07-03 00:31:12下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载