登录
首页 » Others » 直接导入 visio IT网络图标库 网络设备路由交换等图标

直接导入 visio IT网络图标库 网络设备路由交换等图标

于 2021-05-07 发布
0 143
下载积分: 1 下载次数: 1

代码说明:

visio IT网络图标库 网络设备路由交换等图标,,可直接导入使用的图标,可直接导入使用的图标,可直接导入使用的图标

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • K——均值聚类算法的Matlab实现
    【实例简介】模式识别系统聚类法之k均值算法,是无监督学习方法的一种,可以将模式分为k类,程序现在实现了将模式分为3类,供大家参考
    2021-11-08 00:33:25下载
    积分:1
  • Turbo码matlab
    该程序实现了Turbo码的编解码,可以达到论文中仿真图里的良好性能,Turbo码在实际中应用广泛,改程序具有很大实用价值
    2020-12-04下载
    积分:1
  • sscom官方最新版本
    sscom5.13.1是sscom串口工具的最新版本,解决了usb插拔死机的问题
    2020-12-09下载
    积分:1
  • OD交通流数据预测
    小区间OD矩阵的预测工具,输入一已知的数据流可进行自动迭代推算,误差默认设置为0.001.
    2020-12-11下载
    积分:1
  • 个人整合写的测试报告.doc
    测试报告是指把测试的过程和结果写成文档,对发现的问题和缺陷进行分析,为纠正软件的存在的质量问题提供依据,同时为软件验收和交付打下基础。
    2020-12-10下载
    积分:1
  • 基于ARM的PC104总线实现
    详述了x86架构下PC104总线,以及如何在ARM+CPLD的架构下实现PC104总线
    2020-12-09下载
    积分:1
  • wav文件用matlab叠加噪声并消除噪声
    利用matlab添加wav音频文件,并在文件上添加用randn产生均值为0方差为1的正态分布白噪声,再用IIR、FIR滤波器滤波。
    2020-11-30下载
    积分:1
  • 模拟退火Java实现
    本代码为用Java实现的模拟退火求解旅行商问题,希望对大家有帮助
    2020-12-01下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • AD7705制作uV电压表
    利用AD7705芯片制作精度达到uV级的电压表
    2020-12-01下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载