登录
首页 » Others » UCOS-II PC开发环境

UCOS-II PC开发环境

于 2021-05-06 发布
0 128
下载积分: 1 下载次数: 1

代码说明:

UCOS-II PC开发环境,包括UCOS-II源代码,Borland C++ 4.5安装原文件,BORLAND TASM5.0汇编语言编译器,及ucos环境搭建简介

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 连接阿里云主机上的MySQL
    Qt远程连接阿里云主机上的MySQL源码
    2020-12-12下载
    积分:1
  • 基于raspberryPi的AGV视觉导航设计
    用Raspberry Pi 进行简单的视觉机器人控制
    2020-12-03下载
    积分:1
  • Nandflash工厂烧录文件制作步骤
    文档介绍了如何使用海思自带工具制作分区镜像,并生成烧录文件的步骤。对于初学者来说十分有用
    2020-12-07下载
    积分:1
  • 51+PCF8574+1602
    用51单片机2个IO口驱动1602
    2020-12-03下载
    积分:1
  • 数字信号处理C语言序集(DSP算法大全C语言版本446页)
    除掉封面,共446页,只有5.39M,但内容是最全面的,质量上也是非常清晰的。是学dsp算法的绝佳书籍,没有华丽的数学推导,简单明了,名曰数字信号处理C语言程序集,民间又称DSP算法大全C语言版本。第六章FIR数字滤波器的设计F■尋■■b■晷↓國■看↓■↓b日↓bb↓●■■22786.1窗函数方法…22?§6.2域最小误差平方设计.……238§6.3切比雪夫逼近方法…………42第三篇随机数字信号处理第一章经典谱佔计……6§11功率谱估计的周期图方法…····““甲早争·道者自自.264§1.2功率谱估计的相关方法T■冒■■■■■『曾■■詈『國昏日■■哥■订d·聊聊b■山如↓h“◆白ψp4q第二章现代谱估计………………………26821求解一般托布利兹方程组的莱文森算法■■■昏■■1冒■■看嚼司聊國司冒D■180§22求解对称正定方程组的乔里斯基算法q■ψ鲁鲁曾◆◆曾自自4鲁唱音昏鲁自■Z83§23求解尤利沃克广程的菜文森德宾算法…°P甲自287§2.4计算ARMA模型的功率谱密度§2.5尤利沃克谱佔计算法………………………………………292A2.6协力差谱估计算法…1亡■曾■■目■鲁會曾罪司罪鲁·命讠咖D■■■■b啁§2.7 Burg谱佔计算法……1■●33§2.8最大似然谱估计算法第三章时频分析·聊·即·D●b·■唱鲁·◆■申曾阜曾q俨俨■■中個◆314§3.1维格纳( Wigner)分布·“314§32离散小波变换r""t31第四章随机信号的数字滤波也“命甲甲即甲330§41维纳( Wiener)数字滤波330§4,2卡尔曼( Kalman)数宇滤波.吾小如山山甲·自甲§43最小均方(LMS)自适应数字滤波"…"…"∵"卜"r""r"s""341§4-4归一化LMS自适应数字滤波…………344§4.5递推最小二乘(RLS)自适应数字濃泼导↓↓晶3L8第四篇数字图像处理第一章图像雄本运算■■↓罪隱b■【b啁山b西血a导即·晶s咱■聊暴,M352§1.1图像读取、存储与显示…第一篇常用数字信号的产生第一章数字信号的产生§1.1均匀分布的随机数功能产生(a,b)区间上均匀分布的随机数。方法简介均匀分布的概率密度函数为f(r)共它2,方差为Qb通常用U(a,b)表示。均匀分布的均值为+b产生均匀分布随机数的方法下首先,由给定的初值x,用混合同余法a=(ai-1+c)(mod M)产生(,1)区间上的随机数y其中:a-2045,c=1,M=22;然后,通过变换x,=a(ba)y;产生{a,b)区间上的随机数z;三、使用说明1.子函数语句double urniform (a, b, seed>2.形参说明a——双精度实型变量。给定区间的下限。b—双糖度实型变量。给定区间的上限。seed-—长整型指针变量。*seed为随机数的种子。四、子函数程序(文件名: uniform.c)Double uniform (a, b, seed)double a, bilong int的sced;QubIc¥seed=2045兴(#seed)+1ccd=.Scd一(;gced/lC48576)两L18576t=(兴seed)/1048576.0;t=+a)苦trefute〔五、例题产生50个0到1之问均匀分布的随机数主函数程序(文件名: uniform.r):# inelude" stdio.h′include furiomaini)doble a,b,x; int i+Jg intdouble unifo r(double, double, long int xa=0.0;h=1.0;=13?9for(i=0
    2020-07-02下载
    积分:1
  • 雷达系统仿真大作业
    西安电子科技大学雷达系统分析大作业matlab代码
    2020-11-27下载
    积分:1
  • 放大转发AF模式的matlab仿真
    本代码经过matlab测试,分析在AF模式下中继策略对系统性能的影响
    2020-12-02下载
    积分:1
  • 数字上摄影测量最小二乘匹配
    先用点特征提取算子,再粗匹配,最后使用最小二乘匹配,适合核线影像
    2020-11-30下载
    积分:1
  • sklearn0.19中文文档
    sklearn0.19中文文档 PDF格式高清。.1. 广义线性模型1.1.1. 普通最小二乘法1.1.1.1. 普通最小二乘法复杂度1.1.2. 岭回归1.1.2.1. 岭回归的复杂度1.1.2.2. 设置正则化参数:广义交叉验证1.1.3. Lasso1.1.3.1. 设置正则化参数1.1.3.1.1. 使用交叉验证1.1.3.1.2. 基于信息标准的模型选择1.1.3.1.3. 与 SVM 的正则化参数的比较1.1.4. 多任务 Lasso1.1.5. 弹性网络1.1.6. 多任务弹性网络1.1.7. 最小角回归1.1.8. LARS Lasso1.1.1.监督学习1.1.广义线性模型o1.1.1.普通最小二乘法1.1.1.1.普通最小二乘法复杂度o1.1.2.岭回归1.1.2.1.岭回归的复杂度1.1.22.设置正则化参数:广义交叉验证o 113. Lasso■1.1.3.1.设置正则化参数1.1.3.1.1.使用交叉验证■1.1.3.1.2.基于信息标准的模型选择1.1.3.1.3.与SVM的正则化参数的比较o1.1.4.多任务 Lassoo1.1.5.弹性网络o1.1.6.多任务弹性网络o1.1.7.最小角回归o.8. LARS Lasso■1.1.8.1.数学表达式o1.1.9.正交匹配追踪法(OMP)o1.1.10.贝叶斯回归1.1.10.1.贝叶斯岭回归1.1.10.2.主动相关决策理论-ARD1.1.11. logistic回归o1.1.12.随机梯度下降,SGDo1.1.13. Perceptron(感知器)o1.1.14. Passive Aggressive Algorithms(被动攻击算法)o1.1.15.稳健回归( Robustness regression):处理离群点( outliers)和模型错误1.1.15.1.各种使用场景与相关概念■1.1.15.2. RANSAC:随机抽样一致性算法( RANdomSAmple Consensus1.1.15.2.1.算法细节1.1.15.3.Thel-sen预估器:广义中值估计1.1.153.1.算法理论细节1.1.154. Huber回归1.1.155.注意1.1.16.多项式回归:用基函数展开线性模型1.2.线性和二次判别分析o1.2.1.使用线性判别分析来降维o12.2.LDA和QDA分类器的数学公式o123.LDA的降维数学公式o1.2.4. Shrinkage(收缩)o12.5.预估算法1.3.内核岭回归1.4.支持向量机o1.4.1.分类■1.4.1.1.多元分类■1.4.1.2.得分和概率1.4.1.3.非均衡问题1.4.2.回归o143.密度估计,异常( novelty)检测o1.4.4.复杂度o1.4.5.使用诀窍o1.4.6.核函数1.4.6.1.自定义核14.6.1.1.使用 python函数作为内核1.4.6.1.2.使用Gram矩阵14.6.1.3.RBF内核参数o1.4.7.数学公式1.4.7.1.sVC■1.4.7.2. NuSVo1.4.7.3.sVRo14.8.实现细节1.5.随机梯度下降o1.5.1.分类o1.5.2.回归1.5.3.稀疏数据的随机悌度下降o1.5.4.复杂度o1.5.5.实用小贴士o1.5.6.数学描述■1.5.6.1.SGDo1.5.7.实现细节1.6.最近邻o1.6.1.无监督最近邻■1.6.1.1.找到最近邻1.6.1.2. KDTree和 BallTree类1.62.最近邻分类o16.3.最近邻回归o1.6.4.最近邻算法1.64.1.暴力计算■1.6.4.2.K-D树1.64.3.Ba|树■1.6.4.4.最近邻算法的选择1.6.4.5.1 eaf size的影响o165.最近质心分类1.6.5.1.最近缩小质心1.7.高斯过程o1.7.1.高斯过程回归(GPR)o1.7.2.GPR示例1.7.2.1.具有噪声级的GPR估计1.722.GPR和内核岭回归( Kernel Ridge Regression)的比较1.7.2.3. Mauna loa co2数据中的GRRo1.7.3.高斯过程分类(GPC)o1.7.4.GPC示例1.7.4.1.GPC概率预测■1.74.2.GPC在XOR数据集上的举例说明■1.7.4.3.iris数据集上的高斯过程分类(GPC)o1.7.5.高斯过程内核1.7.5.1.高斯过程内核AP■1.7.5.2.基础内核■1.7.5.3.内核操作1.7.5.4.径向基函数内核1.7.5.5. Matern内核1.7.5.6.有理二次内核1.7.5.7.正弦平方内核1.7.58.点乘内核■1.7.5.9.参考文献o1.7.6.传统高斯过程1.7.6.1.回归实例介绍1.7.62.噪声数据拟合17.6.3.数学形式1.7.6.3.1.初始假设■1.7.6.32.最佳线性无偏预测(BLUP)1.7.6.3.3.经验最佳线性无偏估计( EBLUP)1.7.6.4.关联模型1.7.6.5.回归模型1.7.6.6.实现细节1.8.交叉分解1.9.朴素贝叶斯o1.9.1.高斯朴素贝叶斯o1.92.多项分布朴素贝叶斯1.9.3.伯努利朴素贝叶斯1.9.4.堆外朴素贝叶斯模型拟合1.10.决策树o1.10.1.分类o1.10.2.回归o1.10.3.多值输出问题o1.10.4.复杂度分析o1.10.5.实际使用技巧1.10.6.决策树算法:ID3,C4.5,c5.0和CARTo1.10.7.数学表达1.10.7.1.分类标准■1.10.7.2.回归标准1.11.集成方法o1.111. Bagging meta-estimator( Bagging元估计器)o1.11.2.由随机树组成的森林1.11.2.1.随机森林1.11.2.2.极限随机树1.11.2.3.参数1.11.24.并行化1.11.2.5.特征重要性评估1.11.2.6.完全随机树嵌入o 1.113. AdaBoost1.11.3.1.使用方法o1.114. Gradient Tree Boosting(梯度树提升)1.11.4.1.分类1.11.42.回归1.114.3.训练额外的弱学习器1.11.4.4.控制树的大小■1.11.4.5. Mathematical formulation(数学公式)■1.11.4.5.1. LoSS Functions(损失函数)1.114.6. Regularization(正则化)■1.14.6.1.收缩率( Shrinkage)■1.1.4.6.2.子采样( Subsampling)■1.11.4.7. Interpretation(解释性)1.114.7.1. Feature importance(特征重要性)1.114.7.2. Partial dependence(部分依赖)o1.11.5. Voting Classifier(投票分类器)1.115.1.多数类标等(又称为多数/硬投票)1.11.5.1.1.用法■1.11.52.加权平均概率(软投票)1.11.5.3.投票分类器( Voting Classifier)在网格搜索( Grid search)应用1.11.5.3.1.用法1.12.多类和多标签算法o1.12.1.多标签分类格式o1.12.2.1对其余1.122.1.多类学习1.122.2.多标签学习o1.12.3.1对11.12.3.1.多类别学习o1.12.4.误差校正输出代码1.12.4.1.多类别学习o1.12.5.多输出回归o1.12.6.多输出分类o1.12.7.链式分类器·1.13.特征选择1.13.1.移除低方差特征o1.13.2.单变量特征选择o1.13.3.递归式特征消除o1.13.4.使用 Select From Mode选取特征■1.13.4.1.基于L1的特征选取1.13.4.2.基于Tree(树)的特征选取1.13.5.特征选取作为 pipeline(管道)的一部分1.14.半监督学习o1.14.1.标签传播1.15.等式回归1.16.概率校准1.17.神经网络模型(有监督)o1.17.1.多层感知器o1.17.2.分类o1.17.3.回归o1.17.4.正则化o1.17.5.算法o1.17.6.复杂性o1.17.7.数学公式o1.178.实用技巧o1.17.9.使用 warm start的更多控制
    2021-05-06下载
    积分:1
  • 空调智能恒温系统设计+论文
    空调恒温自动控制系统毕业设计及毕业论文,保证是完整的,有程序,有电路图,有实物图
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 33今日下载