登录
首页 » Others » Arduino+Proteus仿真 100个案例资源包.rar

Arduino+Proteus仿真 100个案例资源包.rar

于 2021-05-06 发布
0 211
下载积分: 1 下载次数: 0

代码说明:

单片机C语言程序设计实训100例-基于Arduino+Proteus仿真,提供100套案例仿真电路,可运行HEX程序,及源代码框架。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 种滤除基线漂移和工频干扰的数字滤波算法
    一种滤除基线漂移和工频干扰的数字滤波算法邹波[1] 周远[1,2] [1]深圳职业技术学院电子与信息工程学院,广东深圳518055 [2]南昌大学电子工程系,江西南昌330029 摘  要:介绍了一种用于心电监护的数字滤波算法,对滤波器的设计,包括滤波原理、整系数数字滤波器的波型特征、实现方框图及10点平均数字滤波器进行了分析,并给出心电信号的滤波效果图。实验结果表明,该算法能有效滤除基线漂移和工频干扰,算法简单实用。
    2020-11-30下载
    积分:1
  • matlab 加权质心定位
    mtlab加权质心定位算法很管用啊,大家看看吧。
    2020-12-02下载
    积分:1
  • Vissim二次开发_感应停车实例
    Vissim二次开发_感应停车实例提供了Excel_VB对vissim二次开发的一个实例,大家可以通过这个例子进行学习
    2020-12-12下载
    积分:1
  • sql语句生成器+支持各大数据库+说明书
    SQL语句生成器的特色支持几乎所有类型的数据库,包括小型(桌面)数据库:Fox DBF、Microsoft Execl、Text、Borland Paradox、中型数据库:Microsoft Access大型数据库:Microsoft SQL Server、Sybase、Oracle数据库的连接采取ADO方式故而使用本工具,无需安装和卸载 支持几乎所有的SQL语法:排序(Order By)条件(Where)分组(Group By)分组条件(Having)计算字段SQL查询表SQL查询子句丰富的函数表别名字段别名(包括计算字段和非计算字段)联合(Union
    2020-12-12下载
    积分:1
  • 基于SVM电力系统短期负荷预测的个例
    基于SVM电力系统短期负荷预测的一个例程。包含数据和程序,与传统的算法相比,本代码在导入SVM训练之前对影响短期负荷的各种因素作了一个加权。
    2020-12-11下载
    积分:1
  • OpenGL + freeglut + glew + glm 環境配置
    http://blog.csdn.net/j0939115399/article/details/74656672
    2020-12-08下载
    积分:1
  • OpenGL+MFC+点云
    3D基础:opengl 显示点云数据,MFC框架下
    2020-12-03下载
    积分:1
  • 基于hadoop的web云盘系统
    这是一个基于hadoop的云盘系统,实现的界面是用javaweb完成的,使用的是spring Struts2 hibernate集合框架,配有sql文件。直接导入后运行这是一个基于hadoop的云盘系统,实现的界面是用javaweb完成的,使用的是spring Struts2 hibernate集合框架,配有sql文件。直接导入后运行这是一个基于hadoop的云盘系统,实现的界面是用javaweb完成的,使用的是spring Struts2 hibernate集合框架,配有sql文件。直接导入后运行
    2020-12-05下载
    积分:1
  • 系统辨识大牛Ljung写的MATLAB系统辨识使用手册
    系统辨识大牛Ljung编写的MATLAB系统辨识使用手册,这本书详细地介绍了在MATLAB已经所属simulink环境下,系统辨识工具箱的一些使用办法,是一本非常经典的教材!Revision Historypril 1988First printingJuly 1991Second printingMay1995Third printingNovember 2000 Fourth printingRevised for Version 5.0(Release 12)pril 2001Fifth printingJuly 2002Online onlyRevised for Version 5.0.2 Release 13)June 2004Sixth printingRevised for Version 6.0.1(Release 14)March 2005Online onlyRevised for Version 6.1.1Release 14SP2)September 2005 Seventh printingRevised for Version 6.1.2(Release 14SP3)March 2006Online onlyRevised for Version 6.1.3(Release 2006a)September 2006 Online onlyRevised for Version 6.2 Release 2006b)March 2007Online onlyRevised for Version 7.0 ( Release 2007a)September 2007 Online onlyRevised for Version 7.1 (Release 2007bMarch 2008Online onlyRevised for Version 7.2(Release 2008a)October 2008Online onlyRevised for Version 7.2.1 Release 2008b)March 2009Online onlyRevised for Version 7.3(Release 2009a)September 2009 Online onlyRevised for Version 7.3.1(Release 2009b)March 2010Online onlyRevised for Version 7. 4 (Release 2010a)eptember2010 Online onlyRevised for Version 7.4.1(Release 2010b)pril 2011Online onlRevised for Version 7.4.2(Release 2011a)September 2011 Online onlyRevised for Version 7.4.3(Release 2011b)March 2012Online onlyRevised for Version 8.0( Release 2012aabout the DevelopersAbout the Developersystem Identification Toolbox software is developed in association with thefollowing leading researchers in the system identification fieldLennart Ljung. Professor Lennart Ljung is with the department ofElectrical Engineering at Linkoping University in Sweden. He is a recognizedleader in system identification and has published numerous papers and booksin this areaQinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut Nationalde recherche en Informatique et en Automatique(INria) and at Institut deRecherche en Informatique et systemes Aleatoires (Irisa), both in rennesFrance. He conducts research in the areas of nonlinear system identificationfault diagnosis, and signal processing with applications in the fields of energyautomotive, and biomedical systemsPeter Lindskog. Dr. Peter Lindskog is employed by nira dynamiAB, Sweden. He conducts research in the areas of system identificationsignal processing, and automatic control with a focus on vehicle industryapplicationsAnatoli Juditsky. Professor Anatoli Juditsky is with the laboratoire JeanKuntzmann at the Universite Joseph Fourier, Grenoble, france. He conductsresearch in the areas of nonparametric statistics, system identification, andstochastic optimizationAbout the developersContentsChoosing Your System Identification ApproachLinear model structures1-2What Are Model objects?Model objects represent linear systemsAbout model data1-5Types of Model objectsDynamic System Models1-9Numeric Models1-11umeric Linear Time Invariant (LTD Models1-11Identified LTI modelsIdentified Nonlinear models1-12Nonlinear model structures1-13Recommended Model Estimation Sequence1-14Supported Models for Time- and Frequency-DomainData,,,,,,,1-16Supported Models for Time-Domain Data1-16Supported Models for Frequency-Domain Data1-17See also1-18Supported Continuous-and Discrete-Time Models1-19Model estimation commands1-21Creating Model Structures at the command Line ... 1-22about system Identification Toolbox Model Objects ... 1-22When to Construct a Model Structure Independently ofEstimation1-23Commands for Constructing Model Structures1-24Model Properties1-25See als1-27Modeling Multiple-Output Systems ......... 1-28About Modeling multiple-Output Systems1-28Modeling Multiple Outputs Directly1-29Modeling multiple outputs as a Combination ofSingle-Output Models.......1-29Improving Multiple-Output Estimation Results byWeighing Outputs During Estimation ....... 1-30Identified linear Time-Invariant models1-32IDLTI Models1-32Configuration of the Structure of Measured and Noise oRepresentation of the Measured and noise Components foVarious model Types1-33Components ....1-35Imposing Constraints on the Values of ModeParameters1-37Estimation of Linear models1-8Data Import and Processing2「Supported Data ...2-3Ways to Obtain Identification DataWays to Prepare Data for System Identification ... 2-6Requirements on Data SamplingRepresenting Data in MATLAB Workspace·····Time-Domain Data Representation2-9Time-Series Data Representation2-10ContentsFrequency-Domain Data Representation ....... 2-11Importing Data into the Gui2-17Types of Data You Can import into the GUi2-17Importing time-Domain Data into the GUI2-18Importing Frequency-Domain Data into the GUI2-22Importing Data Objects into the GUI ......... 2-30Specifying the data sampling interval2-34Specifying estimation and validation Data2-35Preping data Using Quick StartCreating Data Sets from a Subset of Signal Channelo2-362-37Creating multiexperiment Data Sets in the gUi2-39Managing data in the gui ............. 2-46Representing Time- and Frequency-Domain Data Usingiddata object2-55iddata constructor2-55iddata Properties.........2-58Creating Multiexperiment Data at the Command Line .. 2-61Select Data Channels, I/O Data and Experiments in iddataObjects2-63Increasing Number of Channels or Data Points of iddataObjects2-67Managing iddata Objects2-69Representing Frequency-Response Data Using idfrdObiec2-76idfrd Constructor2-76idfrd Properties2-77Select I/o Channels and Data in idfrd Objects ..... 2-79Adding Input or Output Channels in idfrd Objects2-80Managing idfrd Objects2-83Operations That Create idfrd Objects2-83Analyzing Data quality2-85Is your data ready for modeling?2-85Plotting Data in the guI Versus at the command line2-86How to plot data in the gui2-86How to plot data at the command line2-92How to Analyze Data Using the advice Command2-94Selecting Subsets of Data2-96IXWhy Select Subsets of Data?2-96Extract Subsets of Data Using the GUI2-97Extract Subsets of data at the Command Line2-99Handling Missing Data and outliers2-100Handling missing data2-100Handling outliers2-101Extract and Model Specific Data Segments2-102See also2-103Handling offsets and Trends in Data2-104When to detrend data2-104Alternatives for Detrending Data in GUi or at theCommand-Line2-105Next Steps After detrending2-107How to Detrend Data Using the Gui2-108How to detrend data at the Command line2-109Detrending Steady-State Dat109cending transient Dat2-109See also2-110Resampling Data2-111What Is resampling?...,,.,,,,,,,,,,,.2-111Resampling data without Aliasing Effects2-112See also2-116Resampling data Using the GUi.,,,,2-117Resampling Data at the Command line2-118Filtering Data2-120Supported Filters2-120Choosing to Prefilter Your Data2-120See also2-121How to Filter Data Using the gui2-122Filtering Time-Domain Data in the GuI........ 2-122Content
    2020-12-11下载
    积分:1
  • 基于关键帧的人体动作识别
    基于关键帧的人体动作识别的论文复现,包括PPT,代码、论文等全套内容,仅是为了方便自己和他人共同学习。论文相对来说比较简单
    2020-06-29下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载