登录
首页 » Others » 直角坐标系下的牛顿拉夫逊潮流计算MATLAB程序

直角坐标系下的牛顿拉夫逊潮流计算MATLAB程序

于 2021-05-06 发布
0 288
下载积分: 1 下载次数: 3

代码说明:

在直角坐标系下进行常规潮流计算含有数据文件及数据文件说明

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • SPH光滑粒子流体动力学中英文都有
    【实例简介】SPH光滑粒子流体动力学中英文都有,中文版本以及英文版的都有,拿去参考吧。光滑粒子流体动力学-一种无网格粒子法 第1章 绪论 1.1 数值模拟 1.1.1 数值模拟的作用 1.1.2 一般数值模拟的求解过程 1.2 基于网格的方法 1.2.1 拉格朗日网格 1.2.2 欧拉网格 1.2.3 拉格朗日网格和欧拉网格的结合 1.2.4 基于网格的数值方法的局限性 1.3 无网格法 1.4 无网格粒子法(MPMS) 1.5 MPMs的求解策略 1.5.1 粒子描述法 1.5.2 粒子近似 1.5.3 MPMS的求解过程 1.6 光滑粒子流体动力学(SPH) 1.6.1 SPH方法 1.6.2 SPH方法简史 1.6.3 本书中的SPH方法 第2章 SPH的概念和基本方程 2.1 SPH的基本思想 2.2 SPH的基本方程 2.2.1 函数的积分表示法 2.2.2 函数的导数积分表示法 2.2.3 粒子近似法 2.2.4 推导SPH公式的一些技巧 2.3 其他基本概念 2.3.1 支持域和影响域 2.3.2 物理影响域 2.3.3 particle—in-cell(PIC)方法 2.4 结论 第3章 光滑函数的构造 3.1 引言 3.2 构造光滑函数的条件 3.2.1 场函数的近似 3.2.2 场函数导数的近似 3.2.3 核近似的连续性 3.2.4 粒子近似的连续性 3.3 构造光滑函数 3.3.1 构造多项式光滑函数 3.3.2 一些相关的问题 3.3.3 光滑函数构造举例 3.4 数值测试 3.5 结论 第4章 SPH方法在广义流体动力学问题中的应用 4.1 引言 4.2 拉格朗日型的Navier—Stokes方程 4.2.1 有限控制体与无穷小流体单元 4.2.2 连续性方程 4.2.3 动量方程 4.2.4 能量方程 4.2.5 Navier-Stokes方程 4.3 用SPH公式解Navier-Stokes方程组 4.3.1 密度的粒子近似法 4.3.2 动量方程的粒子近似法 4.3.3 能量方程的粒子近似法 4.4 流体动力学的SPH数值相关计算 4.4.1 人工粘度 4.4.2 人工热量 4.4.3 物理粘度 4.4.4 可变光滑长度 4.4.5 粒子间相互作用的对称化 4.4.6 零能模式 4.4.7 人工压缩率 4.4.8 边界处理 4.4.9 时间积分 4.5 粒子的相互作用 4.5.1 最近相邻粒子搜索法(NNPS) 4.5.2 粒子对的相互作用 4.6 数值算例 4.6.1 在不可压缩流的应用 4.6.2 在自由表面流的应用 4.6.3 SPH对可压缩流的应用 4.7结论 第5章 非连续的SPH(DSPH) 5.1 引言 5.2修正光滑粒子法 5.2.1一维情况 5.2.2 多维情况 5.3 模拟非连续现象的DSPH公式 5.3.1 DSPH公式 5.3.2 非连续的确定 5.4 数值性能研究 5.5 冲击波的模拟 5.6 结论 第6章 SPH在爆炸模拟中的应用 6.1 引言 6.2 HE爆炸和控制方程 6.2.1 爆炸过程 6.2.2 HE的稳态爆轰 6.2.3 控制方程 6.3 SPH公式 6.4 光滑长度 6.4.1 粒子的初始分布 6.4.2 光滑长度的更新 6.4.3 优化和松弛过程 6.5 数值算例 6.6 应用SPH方法模拟锥孔炸药 6.7 结论 第7章 SPH在水下爆炸冲击模拟中的应用 7.1 引言 7.2 水下爆炸和控制方程 7.2.1 水下爆炸冲击的物理特性 7.2.2 控制方程 7.3 SPH公式 7.4 交界面处理 7.5 数值算例 7.6 真实爆炸模型与人工爆炸模型的比较研究 7.7 水介质缓冲模拟 7.7.1 背景 7.7.2 模拟设置 7.7.3 模拟结果 7.7.4 小结 7.8 结论 第8章 SPH方法在具有材料强度的动力学中的应用 8.1 引言 8.2 具有材料强度的动力学 8.2.1 控制方程 8.2.2 本构模型 8.2.3 状态方程 8.2.4 温度 8.2.5 声速 8.3 具有材料强度的动力学SPH公式 8.4 张力不稳定问题 8.5 自适应光滑粒子流体动力学(ASPH) 8.5.1 为什么需要ASPH方法 8.5.2 ASPH的主要思想 8.6 对具有材料强度的动力学的应用 8.7 结论 第9章 与分子动力学耦合的多尺度模拟 9.1 引言 9.2 分子动力学 9.2.1 分子动力学的基本原理 9.2.2 经典分子动力学 9.2.3 经典MD模拟 9.2.4 Poiseuille流的MD模拟 9.3 MD与FEM和FDM的耦合 9.4 MD与SPH的耦合 9.4.1 模型I:双重功能(具有重叠区域的模型) 9.4.2 模型Ⅱ:力桥(没有重叠区域的模型) 9.4.3
    2021-11-18 00:46:04下载
    积分:1
  • 欧姆龙可序控制器PID实例
    欧姆龙PLC(pid)应用实例,温度控制程序。
    2020-06-28下载
    积分:1
  • 中医舌象的采集与分析
    中医舌象的采集与分析包括了许多自动舌体识别图像处理的内容
    2020-12-09下载
    积分:1
  • 使用Verilog设计CPU
    使用Verilog设计CPU 学习怎么设计CPU哦!!!!!!!!!!!!
    2020-12-02下载
    积分:1
  • Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)
    在学习代数学之余,值得一看的代数学书籍。里面介绍了更为丰富的代数学概念和结论。PREFACEMy purpose in this book is to treat linear transformations on finite-dimensional vector spaces by the methods of more general theories. Theidea is to emphasize the simple geometric notions common to many partsof mathematics and its applications, and to do so in a language that givesaway the trade secrets and tells the student what is in the back of the mindsof people proving theorems about integral equations and Hilbert spaces.The reader does not, however, have to share my prejudiced motivationExcept for an occasional reference to undergraduate mathematics the bookis self-contained and may be read by anyone who is trying to get a feelingfor the linear problems usually discussed in courses on matrix theory orhigher"algebra. The algebraic, coordinate-free methods do not lose powerand elegance by specialization to a finite number of dimensions, and theyare, in my belief, as elementary as the classical coordinatized treatmentI originally intended this book to contain a theorem if and only if aninfinite-dimensional generalization of it already exists, The temptingeasiness of some essentially finite-dimensional notions and results washowever, irresistible, and in the final result my initial intentions are justbarely visible. They are most clearly seen in the emphasis, throughout, ongeneralizable methods instead of sharpest possible results. The reader maysometimes see some obvious way of shortening the proofs i give In suchcases the chances are that the infinite-dimensional analogue of the shorterproof is either much longer or else non-existent.A preliminary edition of the book (Annals of Mathematics Studies,Number 7, first published by the Princeton University Press in 1942)hasbeen circulating for several years. In addition to some minor changes instyle and in order, the difference between the preceding version and thisone is that the latter contains the following new material:(1) a brief dis-cussion of fields, and, in the treatment of vector spaces with inner productsspecial attention to the real case.(2)a definition of determinants ininvariant terms, via the theory of multilinear forms. 3 ExercisesThe exercises(well over three hundred of them) constitute the mostsignificant addition; I hope that they will be found useful by both studentPREFACEand teacher. There are two things about them the reader should knowFirst, if an exercise is neither imperative "prove that.., )nor interrogtive("is it true that...?" )but merely declarative, then it is intendedas a challenge. For such exercises the reader is asked to discover if theassertion is true or false, prove it if true and construct a counterexample iffalse, and, most important of all, discuss such alterations of hypothesis andconclusion as will make the true ones false and the false ones true. Secondthe exercises, whatever their grammatical form, are not always placed 8oas to make their very position a hint to their solution. Frequently exer-cises are stated as soon as the statement makes sense, quite a bit beforemachinery for a quick solution has been developed. A reader who tries(even unsuccessfully) to solve such a"misplaced"exercise is likely to ap-preciate and to understand the subsequent developments much better forhis attempt. Having in mind possible future editions of the book, I askthe reader to let me know about errors in the exercises, and to suggest im-provements and additions. (Needless to say, the same goes for the text.)None of the theorems and only very few of the exercises are my discovery;most of them are known to most working mathematicians, and have beenknown for a long time. Although i do not give a detailed list of my sources,I am nevertheless deeply aware of my indebtedness to the books and papersfrom which I learned and to the friends and strangers who, before andafter the publication of the first version, gave me much valuable encourage-ment and criticism. Iam particularly grateful to three men: J. L. Dooband arlen Brown, who read the entire manuscript of the first and thesecond version, respectively, and made many useful suggestions, andJohn von Neumann, who was one of the originators of the modern spiritand methods that I have tried to present and whose teaching was theinspiration for this bookP、R.HCONTENTS的 FAPTERPAGRI SPACESI. Fields, 1; 2. Vector spaces, 3; 3. Examples, 4;4. Comments, 55. Linear dependence, 7; 6. Linear combinations. 9: 7. Bases, 108. Dimension, 13; 9. Isomorphism, 14; 10. Subspaces, 16; 11. Calculus of subspaces, 17; 12. Dimension of a subspace, 18; 13. Dualspaces, 20; 14. Brackets, 21; 15. Dual bases, 23; 16. Reflexivity, 24;17. Annihilators, 26; 18. Direct sums, 28: 19. Dimension of a directsum, 30; 20. Dual of a direct sum, 31; 21. Qguotient spaces, 33;22. Dimension of a quotient space, 34; 23. Bilinear forms, 3524. Tensor products, 38; 25. Product bases, 40 26. Permutations41; 27. Cycles,44; 28. Parity, 46; 29. Multilinear forms, 4830. Alternating formB, 50; 31. Alternating forms of maximal degree,52II. TRANSFORMATIONS32. Linear transformations, 55; 33. Transformations as vectors, 5634. Products, 58; 35. Polynomials, 59 36. Inverses, 61; 37. Mat-rices, 64; 38. Matrices of transformations, 67; 39. Invariance,7l;40. Reducibility, 72 41. Projections, 73 42. Combinations of pro-jections, 74; 43. Projections and invariance, 76; 44. Adjoints, 78;45. Adjoints of projections, 80; 46. Change of basis, 82 47. Similarity, 84; 48. Quotient transformations, 87; 49. Range and null-space, 88; 50. Rank and nullity, 90; 51. Transformations of rankone, 92 52. Tensor products of transformations, 95; 53. Determinants, 98 54. Proper values, 102; 55. Multiplicity, 104; 56. Triangular form, 106; 57. Nilpotence, 109; 58. Jordan form. 112III ORTHOGONALITY11859. Inner products, 118; 60. Complex inner products, 120; 61. Innerproduct spaces, 121; 62 Orthogonality, 122; 63. Completeness, 124;64. Schwarz e inequality, 125; 65. Complete orthonormal sets, 127;CONTENTS66. Projection theorem, 129; 67. Linear functionals, 130; 68. P aren, gBCHAPTERtheses versus brackets, 13169. Natural isomorphisms, 138;70. Self-adjoint transformations, 135: 71. Polarization, 13872. Positive transformations, 139; 73. Isometries, 142; 74. Changeof orthonormal basis, 144; 75. Perpendicular projections, 14676. Combinations of perpendicular projections, 148; 77. Com-plexification, 150; 78. Characterization of spectra, 158; 79. Spec-ptral theorem, 155; 80. normal transformations, 159; 81. Orthogonaltransformations, 162; 82. Functions of transformations, 16583. Polar decomposition, 169; 84. Commutativity, 171; 85. Self-adjoint transformations of rank one, 172IV. ANALYSIS....17586. Convergence of vectors, 175; 87. Norm, 176; 88. Expressions forthe norm, 178; 89. bounds of a self-adjoint transformation, 17990. Minimax principle, 181; 91. Convergence of linear transformations, 182 92. Ergodic theorem, 184 98. Power series, 186APPENDIX. HILBERT SPACERECOMMENDED READING, 195INDEX OF TERMS, 197INDEX OF SYMBOLS, 200CHAPTER ISPACES§L. FieldsIn what follows we shall have occasion to use various classes of numbers(such as the class of all real numbers or the class of all complex numbers)Because we should not at this early stage commit ourselves to any specificclass, we shall adopt the dodge of referring to numbers as scalars. Thereader will not lose anything essential if he consistently interprets scalarsas real numbers or as complex numbers in the examples that we shallstudy both classes will occur. To be specific(and also in order to operateat the proper level of generality) we proceed to list all the general factsabout scalars that we shall need to assume(A)To every pair, a and B, of scalars there corresponds a scalar a+called the sum of a and B, in such a way that(1) addition is commutative,a+β=β+a,(2)addition is associative, a+(8+y)=(a+B)+y(3 there exists a unique scalar o(called zero)such that a+0= a forevery scalar a, and(4)to every scalar a there corresponds a unique scalar -a such that十(0(B)To every pair, a and B, of scalars there corresponds a scalar aBcalled the product of a and B, in such a way that(1)multiplication is commutative, aB pa(2)multiplication is associative, a(Br)=(aB)Y,( )there exists a unique non-zero scalar 1 (called one)such that al afor every scalar a, and(4)to every non-zero scalar a there corresponds a unique scalar a-1or-such that aaSPACES(C)Multiplication is distributive with respect to addition, a(a+n)If addition and multiplication are defined within some set of objectsscalars) so that the conditions(A),B), and (c)are satisfied, then thatset(together with the given operations) is called a field. Thus, for examplethe set Q of all rational numbers(with the ordinary definitions of sumand product)is a field, and the same is true of the set of all real numberaand the set e of all complex numbersHHXERCISIS1. Almost all the laws of elementary arithmetic are consequences of the axiomsdefining a field. Prove, in particular, that if 5 is field and if a, and y belongto 5. then the following relations hold80+a=ab )Ifa+B=a+r, then p=yca+(B-a)=B (Here B-a=B+(a)(d)a0=0 c=0.(For clarity or emphasis we sometimes use the dot to indi-cate multiplication.()(-a)(-p)(g).If aB=0, then either a=0 or B=0(or both).2.(a)Is the set of all positive integers a field? (In familiar systems, such as theintegers, we shall almost always use the ordinary operations of addition and multi-lication. On the rare occasions when we depart from this convention, we shallgive ample warningAs for "positive, "by that word we mean, here and elsewherein this book, "greater than or equal to zero If 0 is to be excluded, we shall say"strictly positive(b)What about the set of all integers?(c) Can the answers to these questiong be changed by re-defining addition ormultiplication (or both)?3. Let m be an integer, m2 2, and let Zm be the set of all positive integers lessthan m, zm=10, 1, .. m-1). If a and B are in Zmy let a +p be the leastpositive remainder obtained by dividing the(ordinary) sum of a and B by m, andproduct of a and B by m.(Example: if m= 12, then 3+11=2 and 3. 11=9)a) Prove that i is a field if and only if m is a prime.(b What is -1 in Z5?(c) What is囊izr?4. The example of Z, (where p is a prime)shows that not quite all the laws ofelementary arithmetic hold in fields; in Z2, for instance, 1 +1 =0. Prove thatif is a field, then either the result of repeatedly adding 1 to itself is always dif-ferent from 0, or else the first time that it is equal to0 occurs when the numberof summands is a prime. (The characteristic of the field s is defined to be 0 in thefirst case and the crucial prime in the second)SEC. 2VECTOR SPACES35. Let Q(v2)be the set of all real numbers of the form a+Bv2, wherea and B are rational.(a)Ie(√2) a field?(b )What if a and B are required to be integer?6.(a)Does the set of all polynomials with integer coefficients form a feld?(b)What if the coeficients are allowed to be real numbers?7: Let g be the set of all(ordered) pairs(a, b)of real numbers(a) If addition and multiplication are defined by(a月)+(,6)=(a+y,B+6)and(a,B)(Y,8)=(ary,B6),does s become a field?(b )If addition and multiplication are defined by(α,月)+⑦,b)=(a+%,B+6)daB)(,b)=(ay-6a6+的y),is g a field then?(c)What happens (in both the preceding cases)if we consider ordered pairs ofcomplex numbers instead?§2. Vector spaceWe come now to the basic concept of this book. For the definitionthat follows we assume that we are given a particular field s; the scalarsto be used are to be elements of gDEFINITION. A vector space is a set o of elements called vectors satisfyingthe following axiomsQ (A)To every pair, a and g, of vectors in u there corresponds vectora t y, called the aum of a and y, in such a way that(1)& ddition is commutative,x十y=y十a(2)addition is associative, t+(y+2)=(+y)+a(3)there exists in V a unique vector 0(called the origin) such thata t0=s for every vector and(4)to every vector r in U there corresponds a unique vector -rthat c+(-x)=o(B)To every pair, a and E, where a is a scalar and a is a vector in u,there corresponds a vector at in 0, called the product of a and a, in sucha way that(1)multiplication by scalars is associative, a(Bx)=aB)=, and(2 lz a s for every vector xSPACESSFC B(C)(1)Multiplication by scalars is distributive with respect to vectorddition, a(+y=a+ ag, and2)multiplication by vectors is distributive with respect to scalar ad-dition, (a B )r s ac+ Bc.These axioms are not claimed to be logically independent; they aremerely a convenient characterization of the objects we wish to study. Therelation between a vector space V and the underlying field s is usuallydescribed by saying that v is a vector space over 5. If S is the field Rof real number, u is called a real vector space; similarly if s is Q or if gise, we speak of rational vector spaces or complex vector space§3. ExamplesBefore discussing the implications of the axioms, we give some examplesWe shall refer to these examples over and over again, and we shall use thenotation established here throughout the rest of our work.(1) Let e(= e)be the set of all complex numbers; if we interpretr+y and az as ordinary complex numerical addition and multiplicatione becomes a complex vector space2)Let o be the set of all polynomials, with complex coeficients, in avariable t. To make into a complex vector space, we interpret vectoraddition and scalar multiplication as the ordinary addition of two poly-nomials and the multiplication of a polynomial by a complex numberthe origin in o is the polynomial identically zeroExample(1)is too simple and example (2)is too complicated to betypical of the main contents of this book. We give now another exampleof complex vector spaces which(as we shall see later)is general enough forall our purposes.3)Let en,n= 1, 2,. be the set of all n-tuples of complex numbers.Ix=(1,…,轨)andy=(m1,…,n) are elements of e, we write,,bdefinitionz+y=〔1+叽,…十物m)0=(0,…,0),-inIt is easy to verify that all parts of our axioms(a),(B), and (C),52, aresatisfied, so that en is a complex vector space; it will be called n-dimenaionalcomplex coordinate space
    2020-12-05下载
    积分:1
  • 广义预测控制matlab仿真
    广义预测控制matlab仿真程序!希望对大家学预测控制有所帮助!
    2020-12-04下载
    积分:1
  • Java课设计(超市管理系统)Myeclipse+MySql
    本资源中包含超市管理系统的实验报告,可以直接上交版。以及myeclipse下的项目文件。可以直接添加进行运行验证。 超市管理系统有一下模块:一.基本档案管理设计与开发;二,采购订货设计与开发;三,出入库设计与开发;四,人员部门的设计与开发;五,管理员的设计与开发。以及相应信息的增、删、改、查等功能。     数据库设计(或数据结构设计):数据库中包含以下表: 1 管理员信息表:用于登陆系统时进行信息的比对。 2 职员表:存储企业职员的身份信息。 3 采购表:存储采购的商品信息。 4 入库表:存储进入仓库的商品信息。
    2020-12-07下载
    积分:1
  • 强化学习面试真
    强化学习面试真题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
    2020-11-03下载
    积分:1
  • 图:FLoyd算法
    使用Floyd算法,求解点对之间的最短距离。图结构使用邻接矩阵存储。
    2020-12-08下载
    积分:1
  • 基于Java Web的旅游网站设计与实现
    基于Java Web的旅游网站设计与实现 完整项目+毕业论文 文档
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 106215会员总数
  • 5今日下载