登录
首页 » Others » 基于迭代学习控制的双臂机器人matlab仿真程序

基于迭代学习控制的双臂机器人matlab仿真程序

于 2021-05-06 发布
0 160
下载积分: 1 下载次数: 6

代码说明:

基于迭代学习控制的双臂机器人matlab仿真程序,实现轨迹完全跟踪

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ucOS-II源码阅读笔记-底层代码详细注解
    该笔记并非源代码的详细讲解,亦非μC/OS-II的使用说明,而是汇总了阅读源码过程中产生的疑问及解答,进而从中归纳总结出μC/OS-II系统的内在机理,对于想从本质和源头探索操作系统的程序猿或许有点参考帮助,或许能够启发更优质的使用μC/OS-II的方法,甚者若能就实际情况来优化μC/OS-II的内核以提高软件的质量则更当令此文欣慰了。所谓学然后知不足,教然后知困。本文并非教学总结,无能面面俱到,假如看官正为类似问题而纠结,那么若能知遇此文,就算是缘分了。
    2021-05-06下载
    积分:1
  • 用Multisim仿真CPU(.rar)
    【实例简介】使用Multisim仿真CPU首先使用Multisim搭建电路,之后使用MultiMCU模块,使用8052芯片模拟CPU的微控制模块,目前支持使用汇编实现加减无条件跳转数据传输几个有限指令
    2021-11-20 00:31:04下载
    积分:1
  • JavaWeb SQL 超市管理系统
    设计(论文)内容:1.主要内容和技术指标 系统开发背景、系统概述、需求分析、系统设计、功能、感受与体会等。其中需求分析中主要对系统的数据流程图进行了详细描绘。2.任务与要求完成货物类型、商品类型、货物入库、货物出库、库存等的全过程管理,包括添加入库、出库等,添加、修改和删除出库入库记录,修改、删除库存信息,查看出库入库情况和货物数量
    2020-12-12下载
    积分:1
  • C++ MFC连接数据库(VisualStudio开发)
    开发语言C++ MFC界面连接数据库(VisualStudio开发) 附教程https://blog.csdn.net/u011752195/article/details/82839466
    2020-11-28下载
    积分:1
  • 双边滤波器(bilateral filter)(MATLAB版本)
    双边滤波器源码(MATLAB版本),相关资源地址:原作者网站1:http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html#IntroductionMATLAB版本源码下载地址2:http://www.mathworks.com/matlabcentral/fileexchange/12191-bilateral-filteringFast Bilateral Filter 3:http://people.csail.mit.edu/sparis/bf/相关介
    2020-12-10下载
    积分:1
  • 2012年全国大学生数学建模竞赛A等奖论文
    2012年全国大学生数学建模竞赛A题一等奖论文。高教社杯全国大学生数学建模竞赛编号专用页赛区评侧编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于数理分析的葡萄及葡萄酒评价体系摘要葡萄酒的质量评价是硏究葪萄酒的一个重要领域,目前葡萄酒的质量主要由评酒师感官评定。但感官评定存在人为因素,业界一自在尝试用葡萄的理化指标或者葡萄洏的理化指标定量评价葡萄洒的质量。本题要求我们根据葡萄以及葡萄酒的相关数据建模,并研究基」理化指标的葡萄酒评价体系的建立对于问题一,我们首先用配对样品t检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS软件对两组ⅳ酒员的评分的各个指标以及总评分进行了配对样本t检验。得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异白葡萄、红葡萄以及整休的评价存在显著性差异接着我们建立了数掂可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。得到第2组的方差明显小于第1组的从而得出了第2组评价数据的可信度更高的结论。对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。方面,我们对酿酒葡萄的级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27种葡萄理化指标的综合得分及其排序(见正文表5)。另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27种葡萄酒质量的综合得分并排序(见正文表6)。最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5级(见正文表8)。对于问一,首先我们将众多的葡萄理化指标用主成分分析法综合成6个主因子,并将葡萄等级也列为主因子之一。对葡萄的6个主因子,以及葡萄酒的10个指标用SPSS软件进行偏相关分析,得到酒黃酮与葡萄的等级正相关性较强等结论。之后对相关性较强的主因子和指标作多元线性回归。得到了葡萄酒10个单指标与主因了之间的多元回归方程,该回归方程定量表示两者之间的联系对于问题四,我们首先将葡萄酒的理化指标标准化处理,对葡萄酒的质量与荀萄的6个主因子和葡萄酒的10个单指标作偏相关分析,并求出多元线性回归方程。该方程就表示了葡萄和葡萄酒理化指标对葡萄酒质量的影响。之后,我们通过通径分析方法中的逐步回归分析得到葡萄与葡萄酒的理化指标只确定了葡萄酒质量信息的47%。从而得出了不能用葡萄和葡萄酒的理化指标评价葡萄酒的质量的结论。接着我们还采用通径分析屮的间接通径系数分析求出各自变量之间通过传递作用对应变量的影响,得到单宁与总酚传递性影响较强等结论最后,我们对模型的改进方向以及优缺点进行了讨论。关键词:配对样本t检验数据可信度评价主成分分析模糊数学评价综合评分信息熵偏相关分析多元线性回归1问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒荀萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件中给岀∫某年份一些葡萄酒的评价结果,并分別给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。我们需要建立数学模型并且讨论下列问题:1.分析附件1中两组评洒员的评价结果有无显著性差异,并确定哪一组的评价结果更可信。2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。3.分析酿酒葡萄与葡萄酒的理化指标之间的联系。4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用荀萄和葡萄酒的理化指标来评价葡萄酒的质量2模型的假设与符号的约定2.1模型的假设与说明(1)评酒员的打分是按照加分制(不采用扣分制);(2)假设20名评酒员的评价八度在同一区间(数据合理,不需要标准化)(3)每位评酒员的系统误差较小,在本问题屮可以忽略不计(4)假设附件中给出的葡萄和荀萄酒理化指标都准确可靠。2.2符号的约定与说明符号符号的意义原假设显著性概率第1组评酒员对第号品种葡萄酒评分的平均值,第2组评洒员对第号品种葡萄酒评分的平均值第一组评酒员对指标评分的偏差的方差,第二组评酒员对指标评分的偏差的方差,=…,第1组10位评酒员对号酒样品第项指标评分的平均分第组第号评酒员对号酒样品第项指标评分与平均值的偏第1组第号评酒员对其项指标评分与平均值的偏差的平均第2组第个评酒员的总体指标偏差的方差重新确立的第项指标的权重第2组10个评酒员的总体指标偏差的方差评酒员指标的平均评分,=葡萄的第项指标,葡萄的第项因子,=葡萄酒的第项理化指标3问题一的分析与求解3.1问题一的分析题冂要求我们根据两组评酒员对27种红葡萄洒和28种白葡萄泙的10个指标相应的打分情况进行分析,并确定两组评酒员对葡萄酒的评价结果是否有显著性差异,然后判断哪组评酒员的评价结果更可信初步分析可知:由于评酒员对颜色、气味等感官指标的衡量人度不同,因此两组评酒员评价结果是否具有显著性差异应该与评价指标的类型有关,不同的评价指标的显著性差异可能会不同。同时,由于红葡萄酒和白葡萄酒的外观、口味竽指标羔异性较大,处理时需要将白葡萄酒和红葡萄酒的评价结果的显著性差昦分开讨论。基于以上分析,我们可以分别两组品尝同一种类酒样品的评酒员的评价结果进行两两配对,分析配对的数据是否满烂配对样品t检验的前提条件,而且根据常识可知评酒员对同一种酒的同一指标的评价在实际中是符合t检验的条件的。接着我们就可以对数据进行多组配对样品的t检验,从而对两组评洒员评价结果的显著性差异进行检验。由于对同一酒样品的评价数据只有两组,我们只能通过评价结果的稳定性来判定结果的可靠性。而每组结果的可靠性乂最终决定于每个评酒员的稳定性,因此将问题转化为对评酒员稳定性的评价。3.2配对样品的t检验简介统计知识指出:配对样本是指对冋一样本进行两次测试所获得的两组数据,或对两个完全相同的样本在不同条件下进行测试所得的两组数据。在本问中我们可以把配对样品理解为有27组两个完全相同的酒样品在两组不同评酒员的检测下得到的两组数据,两组屮各个指标的数据为每组评酒员对该指标打分的平均值配对样品的t检验可检测配对双方的结果是否具有显著性差异,因此就可以检验出配对的双方(第一组与第二组)对葡萄酒的评价结果是否冇差异性型对样品t检验具有的前提条件为:(1)两样品必须配对(2)两样品来源的总体应该满足正态性分布。配对样品t检验基本原理是:求出每对的差值如果两种处理实际上没有差异,则差值的总体均数应当为0,从该总体中抽出的样本其均数也应当在0附近波动;反之,如果两种处理有差异,差值的总体均数就应当远离0,其样本均数也应当远离0。这样,通过检验该差值总体均数是否为0,就可以得知两种处理有无差异。该检验相应的假设为:=,两种处理没有差別,4≠两和处理存在差别3.3葡萄酒配对样品的t检验问题一中配对样品为27组两个完全相同的酒样品在两组不同评酒员的检测下得到的两组数据,其中两组中各个指标的数据为各组10个评酒员对该指标打分的平均值。该问题中的10个指标分别为:外观澄清度、外观色调、香气纯正度、香气浓度、香气质量、口感纯正度、口感浓度、口感持久性、口感质量、平衡/总休评价。根据t检验的原理,对荀萄酒配对样品进行t检验之前我们要对样品进行正态性检验。首先我们根据附件一并处理表格中的数据,得到配对样品的两组数据,绘制红葡萄酒配对样品表格部分数据如表1表1红葡萄酒配对样品数据表澄清度澄清度平衡/整平衡/整(1组均值)(2组均值)体评价(1组体评价(2组均值)均值)2.3.18.4红29.6红263.63.78.8红273.73.78.8白葡萄酒配对样品表格部分数据如表2:表2白葡萄酒配对样品数据表澄清度澄清度平衡/整平衡/整(1组均值)(2组均值)体评价(1组体评价(2组均值)均值)白17.78.4白22.93.19.1日26白273.778.8从上表中我们能看出,将白葡萄酒和红葡萄酒中的每个指标分别进行样品的配对后,每一个指标的配对结果有27对,每一对的双方分别是1组和2组的评酒员对该指标的评分的平均值。3.3.1样本总体的K-S正态性检验配对样品的t检验要求两对应样品的总体满足正态分布,则总体中的样品应该满足正态性或者近似正态性,样本的正态性检验如卜以红葡萄酒的澄清度的27组数据为例分析:利用SPSS软作绘制两样品的直方图和趋势图如图1所示:图1红葡萄酒澄清度两组数据自方图我们假设两组总体数据都服从态分布,利用SPSS软件进行KS忙态性检验的具体结果见附录2.3。两组数据的近似相伴概率值P分别为0.239和0.329,大于我们一般的显著水平0.05则接受原来假设,即两组红葡萄酒的澄清度数据符合近似正态分布同理可用SPSS软件对其他指标的正态性进行检验,得到结果符合实际猜想,都服从近似正态分布。3.3.2葡萄酒配对样品t检验步骤两种葡萄酒的处理过程类似,这里我们以对红葡萄酒谜价结果的差异的显著性分析为例。step1:我们以第一组对葡萄酒的评价结果总体服从正态分布〃σ,以第二组对葡萄酒的评价结果总体服从正态分布μσ。我们已分别从两总体中获得了抽样样本和,并分别进行两样品相互配对。(具体数据见附录2.1)Step2:;引进一个新的随机变量,对应的样本为将配对样本的t检验转化为单样本t检验Step3:建立零假设4=,构造t统计量;Step4:利用SPSS进行配对样品t检验分析,并对结果做出推断3.4显著性差异结果分析3.3.1红葡萄酒各指标差异显著性分析由SPSS软件对红葡萄酒各指标的配对样品讠枍验后,得到各指标的显著性概率分布表。(结果如表3所示)表3红葡萄酒酒各指标显著性概率P指标外观澄清度外观色调香气纯正度香气浓度‖香气质量P0.6140.0020.1510.1000.010指标口感纯正度口感浓度口感持久性口感质量平衡/整体P0.4370.1580.2510.0550.674由统计学知识,如果显著性概率P显著水平α,则不能拒绝零假设,即认为两总体样本的均值不存在显著差异。则根据表3可得:两组评酒员对红葡萄酒各项指标的评价中除外观色调、香气质量存在显著性差异以外,其他8项指标都无显著性差异。3.3.2白葡萄酒各指标差异显著性分析代入白葡萄酒的评价数据,重复以上步骤,得到白荀萄酒各指标的显著性概率分布表。(结果如表4所示)表4白葡萄酒各指标显著性概率P分布表指标外观澄清度外观色调香气纯正度香气浓度香气质量P0,2990.0890.930.2380.714指标口感纯正度口感浓度口感持久性口感质量平衡/整体0,0000.0050.8630.0000.00l分析表4可得:两组评酒员对白葡萄酒各项指标的评价中只有凵感纯正度」感浓度、凵感质量、平衡/整体评价存在显著性差异,其他6项指标都无显著性差异3.3.3葡萄酒总体差异显著性分析(1)红葡萄酒总体差异显著性分析该问题的附件中已经给出了10项指标的杈重,因此将10项指标利用加权合并成总体评价。对于红葡萄酒两组评价结果构造两组配对t检验。得到显著性概率P=0.030
    2020-12-04下载
    积分:1
  • Opnet 14.5教,帮助文档pdf版
    OPNET14.5的帮助文档,几乎所有的现行阶段的教材都是由该软件帮助文档改编或缩减而成,所以该文档为OPNET学习者必备手册之一
    2020-12-01下载
    积分:1
  • 双馈风机模型
    【实例简介】
    2021-09-26 00:31:15下载
    积分:1
  • 支持向量机
    关于支持向量机里面讲核函数的,介绍了线性核函数、高斯核函数、及多项式核函数等。还介绍了核函数的判定以及Mercer定理1x1121T3212T42.3p(a)L313x2.3.32cT1V2C.223+d更一般地,核数K(x2z)=(xz+)“对应的映射后特征维度为a(求解方法参见http://zhidao.baiducom/question/16706714.html)由于计算的是内积,我们可以想到IR中的余弦相似度,如果ⅹ和z向量夹角越小,那么核函数值越大,反之,越小。因此,核函数值是(x)和(z)的相似度。再看另外一个核函数K(r, z)=expz-z|222这时,如果x和z很相近(x-2‖≈0),那么核函数值为1,如果x和z相差很大(x-2》0),那么核函数值约等于0。由于这个函数类似于高斯分布,因此称为高斯核函数,也叫做径向基函数( Radial basis function简称RBF)。它能够把原始特征映射到无穷维。既然高斯核函数能够比较ⅹ和z的相似度,并映射到0到1,回想 logistic回归, sigmoid函数可以,因此还有sigmoid核函数等等下面有张图说明在低维线性不可分时,映射到高维后就可分了,使用高斯核函数。Linear回回看目即Gaussian来自 Eric Xing的sdes注意,使用核函数后,怎么分类新来的样本呢?线性的时候我们使用SVM学与出W和b,新来样木ⅹ的话,我们使用wTx+ b来判断,如果值大于等于1,那么是正类,小于等于是负类。在两者之间,认为无法确定。如果使用了核函数后,W2x+b就变成了wφ(x)+b,是否先要找到p(x),然后再预测?答案背定不是了,找φ(x很麻烦,回想我们之前说过的wa+6=boy(0)x+bi=1(x(,x)+b只需将替换成(x,x),然后值的判断同上8核函数有效性判定问题:给定一个函数K,我们能否使用K来替代计算φ(x)2中(z),也就说,是否能够找出一个,使得对丁所有的x和z,都有k(x,2)=(x)r中(2)9比如给出了K(x,2)=(x2)2,是否能够认为K是一个有效的核函数下面来解决这个问题,给定m个训练样本全(r(3xm,每一个对应一个特征向量。那么,我们可以将(e) yJ仟意两个和带入K中,计算得到=0。I可以从1到m,j以从1到m,这样可以计算出m*m的核函数矩阵( Kernel Matrix)。为了方便,我们将核函数矩阵和(x,z)都使用K来表示如果假设K是有效地核函数,那么根据核函数定义k1=K(x0x0)=p(x()p(x0)=p(x(0)p(x()=K(x(,x)=K可见,矩阵K应该是个对称阵。让我们得出一个更强的结论,首先使用符号中x(x)来表示映射函数中(x)的第k维属性值。那么对于任意向量z,得2K2=∑∑2K3∑∑(m0y(0)2∑∑∑(z0)(x0)z∑∑∑29(x)k(z0)k i j=S|∑zipk(c(ak0.最后一步和前面计算K(x)=(x2)时类似。从这个公式我们可以看出,如果K是个有效的核函数(即K(xz)和(x)p(2)等价),那么,在训练集上得到的核函数矩阵K应该是半正定的(K≥0这样我们得到一个核函数的必要条件:K是有效的核函数==>核函数矩阵K是对称半正定的可幸的是,这个条件也是充分的,由 Mercer定理来表达。Mercer定理:如果函数K是×四→巫上的映射(也就是从两个n维向量映射到实数域)。那么如果K是一个有效核函数(也称为 Mercer核函数),那么当且仅当对于训练样例(r()x(m,其相应的核函数矩阵是对称半正定的。Mercer定理表明为了证明K是有效的核函数,那么我们不用去寻找φ,而只需要在训练集上求出各,然后判断矩阵K是否是半正定(使用左上角主子式大于等于零等方法)即可。许多其他的教科书在 Mercer定理证明过程中使用了范数和再生希尔伯特空间等概念,但在特征是n维的情况下,这里给出的证明是等价的。核函数不仅仅用在SWM上,但凡在一个模型后算法中出现了,我们都可以常使用区(xz)去替换,这可能能够很好地改善我们的算法。posted on2011-03-1820:22 Jerry Lead阅读(…)评论(…)编辑收藏刷新评论刷新页面返回顶部博客园首页博问新闻闪存程序员招聘知识库Powered by:博客园 Copyright@ Jerry Lead
    2020-12-01下载
    积分:1
  • 基于andriod的百度鹰眼API 轨迹追踪的实现
    百度鹰眼api接入的简单实现,完成路径追踪,实时定位,轨迹画线的功能。可以直接用Android Studio运行。
    2020-12-10下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 29今日下载