登录
首页 » matlab » Gaussian Process Regression

Gaussian Process Regression

于 2021-05-13 发布
0 298
下载积分: 1 下载次数: 19

代码说明:

说明:  贝叶斯网络改进LSTM,实现预测,比较好的算法(Bayesian network to improve LSTM, to achieve prediction, a better algorithm)

文件列表:

data, 0 , 2019-10-16
data\data_1.mat, 172953 , 2019-09-05
data\data_2.mat, 4660 , 2019-09-05
demo_1.m, 1209 , 2019-09-05
demo_2.m, 1248 , 2019-09-05
func, 0 , 2019-10-16
func\plotResult.m, 800 , 2019-09-04
Gaussian Processes for Regression - A Quick Introduction.pdf, 321181 , 2019-09-04
gpml-matlab-v4.2-2018-06-11, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\.octaverc, 8 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\Copyright, 1837 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\cov\apx.m, 39152 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxGrid.m, 38429 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxSparse.m, 2915 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\apxState.m, 20647 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covADD.m, 4141 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covConst.m, 533 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covCos.m, 1642 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covDiscrete.m, 2444 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covDot.m, 4125 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covEye.m, 1506 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covFBM.m, 2480 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covGabor.m, 2950 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covGaborard.m, 862 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGaboriso.m, 747 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGE.m, 1186 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covLIN.m, 878 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINard.m, 718 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINiso.m, 592 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINone.m, 1478 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covMaha.m, 8278 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMask.m, 2077 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMatern.m, 3060 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covMaternard.m, 992 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covMaterniso.m, 843 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covNNone.m, 2181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covNoise.m, 808 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covOne.m, 1112 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covOU.m, 3690 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPER.m, 2825 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covPERard.m, 707 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPeriodic.m, 1834 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPeriodicNoDC.m, 4121 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPERiso.m, 653 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPoly.m, 1728 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPP.m, 1920 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPPard.m, 940 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPPiso.m, 800 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPref.m, 2069 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covProd.m, 3136 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQ.m, 1181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQard.m, 1319 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covRQiso.m, 1165 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covScale.m, 3216 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSE.m, 1056 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covSEard.m, 801 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEiso.m, 704 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEisoU.m, 685 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEproj.m, 674 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEvlen.m, 1229 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSM.m, 6966 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSum.m, 2619 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covULL.m, 2120 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covW.m, 4131 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covWarp.m, 1988 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covZero.m, 1116 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\covFunctions.m, 7962 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\doc\changelog, 257 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\checkmark.png, 198 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\Copy_of_demoRegression.m, 5188 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoClassification.m, 4640 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoGrid1d.m, 2968 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoGrid2d.m, 4208 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoMinimize.m, 910 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\doc\demoRegression.m, 5170 , 2019-09-04
gpml-matlab-v4.2-2018-06-11\doc\demoSparse.m, 3275 , 2016-10-18
gpml-matlab-v4.2-2018-06-11\doc\demoState.m, 3125 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\f0.gif, 26996 , 2016-10-19
gpml-matlab-v4.2-2018-06-11\doc\f1.gif, 4990 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f2.gif, 15082 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f3.gif, 13866 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f4.gif, 13141 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f5.gif, 19258 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f6.gif, 28470 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f7.gif, 31055 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f8.gif, 14698 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f9.png, 159343 , 2016-10-28
gpml-matlab-v4.2-2018-06-11\doc\gpml_randn.m, 1109 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\index.html, 65841 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\manual.pdf, 529383 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\README, 21748 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\style.css, 77 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\usageClassification.m, 2660 , 2013-10-16
gpml-matlab-v4.2-2018-06-11\doc\usageCov.m, 3570 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageLik.m, 2530 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageMean.m, 2264 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usagePrior.m, 3472 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageRegression.m, 2744 , 2016-10-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Image-Steganography-ICS-project--master
    说明:  图片隐写算法实现,采用python代码实现。(Picture steganography.)
    2020-06-17 06:40:01下载
    积分:1
  • 一个加载数据极快效率更高的VB数据列表控件HyperList源码
    一个加载数据极快的VB数据列表控件,名字叫:HyperList ,已经是2.0版本了,所说比常用的ListView要快很多,示例中给出了使用HyperList和ListView同样加载10000条数据情况的速度快慢对比,可以看出Listview确实慢了很多,甚至会造成电脑假死,看来这个HyperList的效率确实要高得多。
    2022-01-30 11:34:22下载
    积分:1
  • RBF神经网络自适应控制MATLAB仿真
    说明:  使用matlab平台学习一些神经网络 RBF神经网络很厉害的 呃呃呃(Using matlab platform to learn some RBF neural networks which are very powerful hiccups)
    2020-11-16 21:59:40下载
    积分:1
  • The help of a simple document editing software, you can deal with a very good so...
    一个简单的帮助文档编辑软件, 可以很好的处理软件的帮助文档-The help of a simple document editing software, you can deal with a very good software to help document
    2022-03-24 01:12:08下载
    积分:1
  • AddressExample
    访问Palm的Address地址簿例子。需要首先安装delphi-conduits类库。此类库已上传请自行查找。(Visit the Palm address book example of the Address. First install the required library delphi-conduits. From such a database has been your own search.)
    2009-02-25 10:29:38下载
    积分:1
  • 采用美国adi公司的bf系列,基于bf533的ez
    采用美国adi公司的bf系列,基于bf533的ez-kit平台的tft液晶屏显示图像功能的代码-Adoption of the United States adi
    2022-02-12 19:55:15下载
    积分:1
  • pn_eegPLV
    计算EEG数据集的锁相值(PLV)。 % %输入参数: eegData是3D矩阵numChannels x numTimePoints x numTrials srate是EEG数据的采样率filtSpec是用于在期望的感兴趣频带中过滤EEG信号的滤波器规范。 它是一个具有两个字段的结构,顺序和范围。 范围指定频带的限制,例如,对于伽马频带,使用filtSpec.range = [35 45]。 在filtSpec.order中指定FIR滤波器的顺序。 一个有用的经验法则可以包括约4到5个周期的所需信号。 例如,对于以500Hz采样的eeg数据,filtSpec.order = 50对应于100ms并且包含~4个周期的γ波段(40Hz)。(Computes the Phase Locking Value (PLV) for an EEG dataset. % % Input parameters: % eegData is a 3D matrix numChannels x numTimePoints x numTrials % srate is the sampling rate of the EEG data % filtSpec is the filter specification to filter the EEG signal in the % desired frequency band of interest. It is a structure with two % fields, order and range. % Range specifies the limits of the frequency % band, for example, put filtSpec.range = [35 45] for gamma band. % Specify the order of the FIR filter in filtSpec.order. A useful % rule of thumb can be to include about 4 to 5 cycles of the desired % signal. For example, filtSpec.order = 50 for eeg data sampled at % 500 Hz corresponds to 100 ms and contains ~4 cycles of gamma band % (40 Hz).)
    2019-04-23 20:00:42下载
    积分:1
  • 卡尔曼滤波3
    说明:  用卡尔曼滤波方法进行GPS静态和动态定位数据的处理。分别建立静态及动态模型及滤波方程,简述动态模型与静态模型的区别与联系;讨论R阵、Q阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;讨论本滤波问题是否可以用最小二乘方法解决。(Kalman filter is used to process GPS static and dynamic positioning data. Establish static and dynamic models and filtering equations respectively, briefly describe the difference and connection between dynamic model and static model; discuss how the selection of R matrix, Q matrix and P0 matrix affects the filtering accuracy and convergence speed, and what should be paid attention to when taking values; discuss whether the filtering problem can be solved by the least square method.)
    2021-03-16 22:59:21下载
    积分:1
  • VC++猫捉老鼠捉迷藏游戏
    VC++猫捉老鼠捉迷藏游戏,带音效,每个老鼠,不管是猫的侧身还是后身,只要一碰猫就算是被猫吃看.只需将算法改为如下,便可实现只有接近嘴巴时才被吃掉.   If(在老鼠接猫时,再判断老鼠接的是猫的嘴巴,){吃掉}   即是:   若老鼠在猫的左边接近猫,且猫的方向需向右(m_nCatDirection==2)才能吃掉老鼠.   若老鼠在猫的右边接近猫,且猫的方向需向左(m_nCatDirection==3)才能吃掉老鼠.   若老鼠在猫的上边接近猫,且猫的方向需向下(m_nCatDirection==1)才能吃掉老鼠.   若老鼠在猫的下边接近猫,且猫的方向需向上(m_nCatDirection==0)才能吃掉老鼠.   以老鼠在猫的左边接近猫为例
    2022-03-30 15:02:59下载
    积分:1
  • VC++函数表达式计算源码实例及截图
    VC++函数表达式计算源码实例及测试截图,德国老外的程序,可以计算各种不同的函数、四则运算,还可以处理括号,计算正余弦等,值得借鉴的一款函数表达式计算工具。
    2023-02-21 16:00:04下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载