登录
首页 » matlab » Gaussian Process Regression

Gaussian Process Regression

于 2021-05-13 发布
0 299
下载积分: 1 下载次数: 19

代码说明:

说明:  贝叶斯网络改进LSTM,实现预测,比较好的算法(Bayesian network to improve LSTM, to achieve prediction, a better algorithm)

文件列表:

data, 0 , 2019-10-16
data\data_1.mat, 172953 , 2019-09-05
data\data_2.mat, 4660 , 2019-09-05
demo_1.m, 1209 , 2019-09-05
demo_2.m, 1248 , 2019-09-05
func, 0 , 2019-10-16
func\plotResult.m, 800 , 2019-09-04
Gaussian Processes for Regression - A Quick Introduction.pdf, 321181 , 2019-09-04
gpml-matlab-v4.2-2018-06-11, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\.octaverc, 8 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\Copyright, 1837 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\cov\apx.m, 39152 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxGrid.m, 38429 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxSparse.m, 2915 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\apxState.m, 20647 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covADD.m, 4141 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covConst.m, 533 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covCos.m, 1642 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covDiscrete.m, 2444 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covDot.m, 4125 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covEye.m, 1506 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covFBM.m, 2480 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covGabor.m, 2950 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covGaborard.m, 862 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGaboriso.m, 747 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGE.m, 1186 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covLIN.m, 878 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINard.m, 718 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINiso.m, 592 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINone.m, 1478 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covMaha.m, 8278 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMask.m, 2077 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMatern.m, 3060 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covMaternard.m, 992 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covMaterniso.m, 843 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covNNone.m, 2181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covNoise.m, 808 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covOne.m, 1112 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covOU.m, 3690 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPER.m, 2825 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covPERard.m, 707 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPeriodic.m, 1834 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPeriodicNoDC.m, 4121 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPERiso.m, 653 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPoly.m, 1728 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPP.m, 1920 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPPard.m, 940 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPPiso.m, 800 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPref.m, 2069 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covProd.m, 3136 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQ.m, 1181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQard.m, 1319 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covRQiso.m, 1165 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covScale.m, 3216 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSE.m, 1056 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covSEard.m, 801 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEiso.m, 704 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEisoU.m, 685 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEproj.m, 674 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEvlen.m, 1229 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSM.m, 6966 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSum.m, 2619 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covULL.m, 2120 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covW.m, 4131 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covWarp.m, 1988 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covZero.m, 1116 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\covFunctions.m, 7962 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\doc\changelog, 257 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\checkmark.png, 198 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\Copy_of_demoRegression.m, 5188 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoClassification.m, 4640 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoGrid1d.m, 2968 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoGrid2d.m, 4208 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoMinimize.m, 910 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\doc\demoRegression.m, 5170 , 2019-09-04
gpml-matlab-v4.2-2018-06-11\doc\demoSparse.m, 3275 , 2016-10-18
gpml-matlab-v4.2-2018-06-11\doc\demoState.m, 3125 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\f0.gif, 26996 , 2016-10-19
gpml-matlab-v4.2-2018-06-11\doc\f1.gif, 4990 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f2.gif, 15082 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f3.gif, 13866 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f4.gif, 13141 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f5.gif, 19258 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f6.gif, 28470 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f7.gif, 31055 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f8.gif, 14698 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f9.png, 159343 , 2016-10-28
gpml-matlab-v4.2-2018-06-11\doc\gpml_randn.m, 1109 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\index.html, 65841 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\manual.pdf, 529383 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\README, 21748 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\style.css, 77 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\usageClassification.m, 2660 , 2013-10-16
gpml-matlab-v4.2-2018-06-11\doc\usageCov.m, 3570 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageLik.m, 2530 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageMean.m, 2264 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usagePrior.m, 3472 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageRegression.m, 2744 , 2016-10-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • cohesive_vumat
    说明:  cohesive的vumat程序与文章A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens有关(Cohesive VUMAT program)
    2020-07-01 00:00:02下载
    积分:1
  • 1车牌识别
    车牌识别,基于halcon实现车牌识别功能,提取图片,识别,保存车牌信息等功能(Study of Character Recognition in Vehicle License Plate System)
    2019-03-26 14:11:10下载
    积分:1
  • 测试蓝本,请留意,功能很全的,可以参照,减少工作量。
    测试蓝本,请留意,功能很全的,可以参照,减少工作量。-testing blueprint, please note that the very function of the whole, it can refer to reduce the workload.
    2022-05-20 06:13:58下载
    积分:1
  • Life_Game
    说明:  这个是八皇后的代码,用VC写的,使用了c++数据结构,用了递归回溯(eightQueen)
    2009-08-05 00:28:02下载
    积分:1
  • jQuery图片浏览效果
    jQuery图片浏览效果,控制图片上一张、下一张切换显示,也就是网页上的焦点图效果,直接就叫做图片切换吧,看了效果你就明白了。两侧的箭头会智能改变方向,当到达最后一张或第一张时,只需要显示一侧的箭头。效果图如截图所示。
    2023-04-15 11:55:04下载
    积分:1
  • win98及winme所有补丁
    win98以及winme的所有补丁,留给有需要的人(Win98 and all the patches of winme for the people in need)
    2021-03-24 19:29:14下载
    积分:1
  • 电路标准调制仿真
    模电高频实验,交流电压的标准调幅和抑制载波调幅(Standard Modulation of AC Voltage)
    2018-11-28 11:46:03下载
    积分:1
  • Kalman Filter Based on an Improved Blind multi
    一种基于改进Kalman滤波的盲多用户检测,论文不错,可以-Kalman Filter Based on an Improved Blind multi-user detection, paper good, take a look 。
    2023-07-30 23:30:03下载
    积分:1
  • fmcw 雷达仿真 fmcw sim
    fmcw 雷达仿真,功能现多目标的检测,采用fmcw体制进行调制,可以测距测速仿真。(FMCW radar simulation)
    2020-09-04 20:18:07下载
    积分:1
  • hotel reservation systems to provide housing and the number of beds allocated fo...
    旅馆订位系统 提供住房及床位分配功能并且能进行退房处理-hotel reservation systems to provide housing and the number of beds allocated for functional and can handle Checkout
    2022-04-11 03:29:39下载
    积分:1
  • 696518资源总数
  • 106245会员总数
  • 18今日下载