登录
首页 » matlab » Gaussian Process Regression

Gaussian Process Regression

于 2021-05-13 发布
0 239
下载积分: 1 下载次数: 19

代码说明:

说明:  贝叶斯网络改进LSTM,实现预测,比较好的算法(Bayesian network to improve LSTM, to achieve prediction, a better algorithm)

文件列表:

data, 0 , 2019-10-16
data\data_1.mat, 172953 , 2019-09-05
data\data_2.mat, 4660 , 2019-09-05
demo_1.m, 1209 , 2019-09-05
demo_2.m, 1248 , 2019-09-05
func, 0 , 2019-10-16
func\plotResult.m, 800 , 2019-09-04
Gaussian Processes for Regression - A Quick Introduction.pdf, 321181 , 2019-09-04
gpml-matlab-v4.2-2018-06-11, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\.octaverc, 8 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\Copyright, 1837 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\cov\apx.m, 39152 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxGrid.m, 38429 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxSparse.m, 2915 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\apxState.m, 20647 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covADD.m, 4141 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covConst.m, 533 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covCos.m, 1642 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covDiscrete.m, 2444 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covDot.m, 4125 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covEye.m, 1506 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covFBM.m, 2480 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covGabor.m, 2950 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covGaborard.m, 862 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGaboriso.m, 747 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGE.m, 1186 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covLIN.m, 878 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINard.m, 718 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINiso.m, 592 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINone.m, 1478 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covMaha.m, 8278 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMask.m, 2077 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMatern.m, 3060 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covMaternard.m, 992 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covMaterniso.m, 843 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covNNone.m, 2181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covNoise.m, 808 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covOne.m, 1112 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covOU.m, 3690 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPER.m, 2825 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covPERard.m, 707 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPeriodic.m, 1834 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPeriodicNoDC.m, 4121 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPERiso.m, 653 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPoly.m, 1728 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPP.m, 1920 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPPard.m, 940 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPPiso.m, 800 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPref.m, 2069 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covProd.m, 3136 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQ.m, 1181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQard.m, 1319 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covRQiso.m, 1165 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covScale.m, 3216 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSE.m, 1056 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covSEard.m, 801 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEiso.m, 704 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEisoU.m, 685 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEproj.m, 674 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEvlen.m, 1229 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSM.m, 6966 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSum.m, 2619 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covULL.m, 2120 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covW.m, 4131 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covWarp.m, 1988 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covZero.m, 1116 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\covFunctions.m, 7962 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\doc\changelog, 257 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\checkmark.png, 198 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\Copy_of_demoRegression.m, 5188 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoClassification.m, 4640 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoGrid1d.m, 2968 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoGrid2d.m, 4208 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoMinimize.m, 910 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\doc\demoRegression.m, 5170 , 2019-09-04
gpml-matlab-v4.2-2018-06-11\doc\demoSparse.m, 3275 , 2016-10-18
gpml-matlab-v4.2-2018-06-11\doc\demoState.m, 3125 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\f0.gif, 26996 , 2016-10-19
gpml-matlab-v4.2-2018-06-11\doc\f1.gif, 4990 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f2.gif, 15082 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f3.gif, 13866 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f4.gif, 13141 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f5.gif, 19258 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f6.gif, 28470 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f7.gif, 31055 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f8.gif, 14698 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f9.png, 159343 , 2016-10-28
gpml-matlab-v4.2-2018-06-11\doc\gpml_randn.m, 1109 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\index.html, 65841 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\manual.pdf, 529383 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\README, 21748 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\style.css, 77 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\usageClassification.m, 2660 , 2013-10-16
gpml-matlab-v4.2-2018-06-11\doc\usageCov.m, 3570 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageLik.m, 2530 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageMean.m, 2264 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usagePrior.m, 3472 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageRegression.m, 2744 , 2016-10-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 劳伦兹
    lorenz-mie散射理论太麻烦了,看看这里把,米散射的计算软件,省了很多编程的时间-lorenz-mie scattering theory is too cumbersome to see here, m scattering calculation software, save a lot of programming time
    2022-02-02 13:09:30下载
    积分:1
  • 动态缩放焦点图代码
    态缩放焦点图代码是一款jQuery+CSS3实现的动态缩放焦点图代码(Zoom Focus Graph Code is a dynamic zoom Focus Graph Code implemented by jQuery+CSS3)
    2019-03-27 14:07:35下载
    积分:1
  • 本游戏的主角是个小球,玩家通过按右键的时间长短来决定小球的初始速度,当按动左键时小球启动,小球在运动过程中将受到磨察力的作用,速度将减慢最终停止,小球停止的位置...
    本游戏的主角是个小球,玩家通过按右键的时间长短来决定小球的初始速度,当按动左键时小球启动,小球在运动过程中将受到磨察力的作用,速度将减慢最终停止,小球停止的位置距离右边红色墙壁的距离(距离越近成绩越高)及小球在运行过程中与墙壁碰撞的次数(次数越多成绩越高)将决定玩家的最终成绩,按任意键程序将把当前成绩与存放在mc.txt中的历史成绩比较,给玩家以平价,并将当前成绩保存在mc.txt中。游戏有两个界面第一个界面是游戏场景,其中有三个参数,由左至右依次为“DIS”最终离右边墙的距离,“BUMP”小球在运行过程中碰墙的次数,“SPEED”小球的运行速度。第二个场景是成绩平价界面,根据玩家成绩给以相应的平价 。另外,由于机器配置的不同可能会出现速度上的迥异。-the protagonist of this game is a small ball, players adopted by the right to determine the length of time the ball"s initial velocity, when pressed button at the start of small ball, the ball movement in the process of grinding reviewer will be the role of power, speed will slow down eventually stopped, the ball stopped at a location away from the right side of the red walls of the distance ( the more recent results from the higher) and the ball in the course of operation and the number of collisions walls (the more the number of higher performance) will determine the ultimate success players by arbitrary procedures will bond with the current performance mc
    2022-02-20 23:59:12下载
    积分:1
  • Interface with the use of Visa communications Keithley2000 multimeter, LabVIEW P...
    利用Visa接口与Keithley2000万用表通信,LabVIEW编程-Interface with the use of Visa communications Keithley2000 multimeter, LabVIEW Programming
    2023-02-17 08:40:03下载
    积分:1
  • sample application to test
    sample application to test
    2022-11-08 05:35:04下载
    积分:1
  • 滑动平均滤波程序
    说明:  滑动滤波程序的开发,供大家借鉴,也是为了能获得大家的资源(Sliding filter program)
    2020-06-23 18:40:01下载
    积分:1
  • MTT_Model_With_NNClass_SingleStation
    说明:  基于卡尔曼滤波和最近邻法的多目标跟踪算法(multiple target tracking in Nearest Neighborhood Classifier)
    2020-08-26 00:18:16下载
    积分:1
  • 3
    一款基于jQuery+CSS3+HTML5实现的折叠卡片式下拉菜单特效代码,有一种3D立体效果的下拉菜单代码。(A jQuery+CSS3+HTML5 based folding card drop-down menu special effect code, has a 3D stereoscopic effect of the drop-down menu code.)
    2018-07-27 12:33:46下载
    积分:1
  • through DX D3D achieve a group photo of a simple animation functions, we can und...
    通过DX的D3D实现一组图片的简单的动画功能,对于大家理解动画的动作方式很有帮助.-through DX D3D achieve a group photo of a simple animation functions, we can understand the animation moves very helpful way.
    2022-10-15 01:40:03下载
    积分:1
  • 优化K值
    说明:  分解信号,能量差值优化K,峭度,样本熵,排列熵(Decomposition of signal, optimization of energy difference value K, kurtosis, sample entropy, permutation entropy)
    2020-04-11 16:58:16下载
    积分:1
  • 696518资源总数
  • 104432会员总数
  • 16今日下载