登录
首页 » matlab » Gaussian Process Regression

Gaussian Process Regression

于 2021-05-13 发布
0 212
下载积分: 1 下载次数: 17

代码说明:

说明:  贝叶斯网络改进LSTM,实现预测,比较好的算法(Bayesian network to improve LSTM, to achieve prediction, a better algorithm)

文件列表:

data, 0 , 2019-10-16
data\data_1.mat, 172953 , 2019-09-05
data\data_2.mat, 4660 , 2019-09-05
demo_1.m, 1209 , 2019-09-05
demo_2.m, 1248 , 2019-09-05
func, 0 , 2019-10-16
func\plotResult.m, 800 , 2019-09-04
Gaussian Processes for Regression - A Quick Introduction.pdf, 321181 , 2019-09-04
gpml-matlab-v4.2-2018-06-11, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\.octaverc, 8 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\Copyright, 1837 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\cov\apx.m, 39152 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxGrid.m, 38429 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxSparse.m, 2915 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\apxState.m, 20647 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covADD.m, 4141 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covConst.m, 533 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covCos.m, 1642 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covDiscrete.m, 2444 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covDot.m, 4125 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covEye.m, 1506 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covFBM.m, 2480 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covGabor.m, 2950 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covGaborard.m, 862 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGaboriso.m, 747 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGE.m, 1186 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covLIN.m, 878 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINard.m, 718 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINiso.m, 592 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINone.m, 1478 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covMaha.m, 8278 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMask.m, 2077 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMatern.m, 3060 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covMaternard.m, 992 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covMaterniso.m, 843 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covNNone.m, 2181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covNoise.m, 808 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covOne.m, 1112 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covOU.m, 3690 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPER.m, 2825 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covPERard.m, 707 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPeriodic.m, 1834 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPeriodicNoDC.m, 4121 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPERiso.m, 653 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPoly.m, 1728 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPP.m, 1920 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPPard.m, 940 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPPiso.m, 800 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPref.m, 2069 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covProd.m, 3136 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQ.m, 1181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQard.m, 1319 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covRQiso.m, 1165 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covScale.m, 3216 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSE.m, 1056 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covSEard.m, 801 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEiso.m, 704 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEisoU.m, 685 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEproj.m, 674 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEvlen.m, 1229 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSM.m, 6966 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSum.m, 2619 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covULL.m, 2120 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covW.m, 4131 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covWarp.m, 1988 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covZero.m, 1116 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\covFunctions.m, 7962 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\doc\changelog, 257 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\checkmark.png, 198 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\Copy_of_demoRegression.m, 5188 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoClassification.m, 4640 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoGrid1d.m, 2968 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoGrid2d.m, 4208 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoMinimize.m, 910 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\doc\demoRegression.m, 5170 , 2019-09-04
gpml-matlab-v4.2-2018-06-11\doc\demoSparse.m, 3275 , 2016-10-18
gpml-matlab-v4.2-2018-06-11\doc\demoState.m, 3125 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\f0.gif, 26996 , 2016-10-19
gpml-matlab-v4.2-2018-06-11\doc\f1.gif, 4990 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f2.gif, 15082 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f3.gif, 13866 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f4.gif, 13141 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f5.gif, 19258 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f6.gif, 28470 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f7.gif, 31055 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f8.gif, 14698 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f9.png, 159343 , 2016-10-28
gpml-matlab-v4.2-2018-06-11\doc\gpml_randn.m, 1109 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\index.html, 65841 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\manual.pdf, 529383 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\README, 21748 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\style.css, 77 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\usageClassification.m, 2660 , 2013-10-16
gpml-matlab-v4.2-2018-06-11\doc\usageCov.m, 3570 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageLik.m, 2530 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageMean.m, 2264 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usagePrior.m, 3472 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageRegression.m, 2744 , 2016-10-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • classifier_cnn
    利用MATLAB实现一个基于CNN的图像分类算法(Implementing an image classification algorithm based on CNN with MATLAB)
    2019-01-13 16:04:12下载
    积分:1
  • 冒险岛商业登录器(支持帐号注册)v1.0
    说明:  冒险岛商业登录器(支持帐号注册)v1.0(Adventure Island Business login (support account registration))
    2021-03-21 11:59:17下载
    积分:1
  • 伪随机数
    几种常见的伪随机数的产生程序,上载程序是从别处下载的,觉得还比较有用(several common pseudo-random number generated procedures, procedures are available on the download elsewhere, I felt that more useful)
    2005-08-04 18:23:06下载
    积分:1
  • HF-LPX30系列Wi-Fi模块用户手册V1.8.pdf
    说明:  HF-LPX30系列Wi-Fi模块用户手册(HF-LPX30 WiFi Module User Manual)
    2020-06-25 10:00:01下载
    积分:1
  • Of the QRS wave of ECG to pre
    对心电信号的QRS波进行前期处理,主要是下载信号和对信号去噪滤波。-Of the QRS wave of ECG to pre-treatment, mainly to download signals and to signal de-noising filter.
    2022-03-25 15:09:26下载
    积分:1
  • 40423956-PFC-notes
    boost rectifier circuit
    2012-03-15 10:39:43下载
    积分:1
  • FFT程序用C语言编写的程序,方法,这是一个信号…
    该程序用C语言编写了DFT、FFT程序,该程序是信号运用的基本程序-The program was prepared with the C language DFT, FFT program, which is a signal to use the basic procedures for
    2022-08-03 14:46:46下载
    积分:1
  • in DOS environment to support long file name to use
    在DOS环境下支持长文件名的使用-in DOS environment to support long file name to use
    2022-01-25 19:55:29下载
    积分:1
  • This document is related to the computer network and router information on the c...
    本文档是关于计算机网络和路由器的资料,对计算机网络和路由器的知识有一个详细的介绍和解释-This document is related to the computer network and router information on the computer network and router knowledge a detailed introduction and explanation
    2022-09-10 13:15:03下载
    积分:1
  • about matlab.m
    根据四个偏振角度的偏振图像计算偏振斯托斯矢量。(The polarization stokes vector is calculated from four polarization angles.)
    2021-04-26 10:58:46下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 33今日下载