登录
首页 » matlab » DeepLearnToolbox-master

DeepLearnToolbox-master

于 2021-03-21 发布
0 285
下载积分: 1 下载次数: 8

代码说明:

说明:  该工具包提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。您可以使用卷积神经网络(ConvNet、CNN)和长短期记忆 (LSTM) 网络对图像、时序和文本数据执行分类和回归。应用程序和绘图可帮助您可视化激活值、编辑网络架构和监控训练进度。(The toolbox provides a framework for designing and implementing deep neural networks through algorithms, pre training models and applications. You can use convolutional neural networks (convnet, CNN) and long and short term memory (LSTM) networks to perform classification and regression on image, temporal, and text data. Applications and graphics help you visualize activation values, edit network architecture, and monitor training progress.)

文件列表:

DeepLearnToolbox-master, 0 , 2021-03-06
DeepLearnToolbox-master\.travis.yml, 249 , 2015-12-01
DeepLearnToolbox-master\CAE, 0 , 2021-03-06
DeepLearnToolbox-master\CAE\caeapplygrads.m, 1219 , 2015-12-01
DeepLearnToolbox-master\CAE\caebbp.m, 917 , 2015-12-01
DeepLearnToolbox-master\CAE\caebp.m, 1011 , 2015-12-01
DeepLearnToolbox-master\CAE\caedown.m, 259 , 2015-12-01
DeepLearnToolbox-master\CAE\caeexamples.m, 754 , 2015-12-01
DeepLearnToolbox-master\CAE\caenumgradcheck.m, 3618 , 2015-12-01
DeepLearnToolbox-master\CAE\caesdlm.m, 845 , 2015-12-01
DeepLearnToolbox-master\CAE\caetrain.m, 1148 , 2015-12-01
DeepLearnToolbox-master\CAE\caeup.m, 489 , 2015-12-01
DeepLearnToolbox-master\CAE\max3d.m, 173 , 2015-12-01
DeepLearnToolbox-master\CAE\scaesetup.m, 1937 , 2015-12-01
DeepLearnToolbox-master\CAE\scaetrain.m, 270 , 2015-12-01
DeepLearnToolbox-master\CNN, 0 , 2021-03-06
DeepLearnToolbox-master\CNN\cnnapplygrads.m, 575 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnbp.m, 2141 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnff.m, 1774 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnnumgradcheck.m, 3430 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnsetup.m, 2020 , 2015-12-01
DeepLearnToolbox-master\CNN\cnntest.m, 193 , 2015-12-01
DeepLearnToolbox-master\CNN\cnntrain.m, 845 , 2015-12-01
DeepLearnToolbox-master\CNN\test_example_CNN.m, 981 , 2015-12-01
DeepLearnToolbox-master\CONTRIBUTING.md, 544 , 2015-12-01
DeepLearnToolbox-master\DBN, 0 , 2021-03-06
DeepLearnToolbox-master\DBN\dbnsetup.m, 557 , 2015-12-01
DeepLearnToolbox-master\DBN\dbntrain.m, 232 , 2015-12-01
DeepLearnToolbox-master\DBN\dbnunfoldtonn.m, 425 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmdown.m, 90 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmtrain.m, 1401 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmup.m, 89 , 2015-12-01
DeepLearnToolbox-master\LICENSE, 1313 , 2015-12-01
DeepLearnToolbox-master\NN, 0 , 2021-03-06
DeepLearnToolbox-master\NN\nnapplygrads.m, 628 , 2015-12-01
DeepLearnToolbox-master\NN\nnbp.m, 1638 , 2015-12-01
DeepLearnToolbox-master\NN\nnchecknumgrad.m, 704 , 2015-12-01
DeepLearnToolbox-master\NN\nneval.m, 811 , 2015-12-01
DeepLearnToolbox-master\NN\nnff.m, 1849 , 2015-12-01
DeepLearnToolbox-master\NN\nnpredict.m, 192 , 2015-12-01
DeepLearnToolbox-master\NN\nnsetup.m, 1844 , 2015-12-01
DeepLearnToolbox-master\NN\nntest.m, 184 , 2015-12-01
DeepLearnToolbox-master\NN\nntrain.m, 2414 , 2015-12-01
DeepLearnToolbox-master\NN\nnupdatefigures.m, 1858 , 2015-12-01
DeepLearnToolbox-master\README.md, 8861 , 2015-12-01
DeepLearnToolbox-master\README_header.md, 2244 , 2015-12-01
DeepLearnToolbox-master\REFS.md, 950 , 2015-12-01
DeepLearnToolbox-master\SAE, 0 , 2021-03-06
DeepLearnToolbox-master\SAE\saesetup.m, 132 , 2015-12-01
DeepLearnToolbox-master\SAE\saetrain.m, 308 , 2015-12-01
DeepLearnToolbox-master\create_readme.sh, 744 , 2015-12-01
DeepLearnToolbox-master\data, 0 , 2021-03-06
DeepLearnToolbox-master\data\mnist_uint8.mat, 14735220 , 2015-12-01
DeepLearnToolbox-master\tests, 0 , 2021-03-06
DeepLearnToolbox-master\tests\runalltests.m, 165 , 2015-12-01
DeepLearnToolbox-master\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_CNN.m, 981 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_DBN.m, 1031 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_NN.m, 3247 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_SAE.m, 934 , 2015-12-01
DeepLearnToolbox-master\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2015-12-01
DeepLearnToolbox-master\util, 0 , 2021-03-06
DeepLearnToolbox-master\util\allcomb.m, 2618 , 2015-12-01
DeepLearnToolbox-master\util\expand.m, 1958 , 2015-12-01
DeepLearnToolbox-master\util\flicker.m, 208 , 2015-12-01
DeepLearnToolbox-master\util\flipall.m, 80 , 2015-12-01
DeepLearnToolbox-master\util\fliplrf.m, 543 , 2015-12-01
DeepLearnToolbox-master\util\flipudf.m, 576 , 2015-12-01
DeepLearnToolbox-master\util\im2patches.m, 313 , 2015-12-01
DeepLearnToolbox-master\util\isOctave.m, 108 , 2015-12-01
DeepLearnToolbox-master\util\makeLMfilters.m, 1895 , 2015-12-01
DeepLearnToolbox-master\util\myOctaveVersion.m, 169 , 2015-12-01
DeepLearnToolbox-master\util\normalize.m, 97 , 2015-12-01
DeepLearnToolbox-master\util\patches2im.m, 242 , 2015-12-01
DeepLearnToolbox-master\util\randcorr.m, 283 , 2015-12-01
DeepLearnToolbox-master\util\randp.m, 2083 , 2015-12-01
DeepLearnToolbox-master\util\rnd.m, 49 , 2015-12-01
DeepLearnToolbox-master\util\sigm.m, 48 , 2015-12-01
DeepLearnToolbox-master\util\sigmrnd.m, 126 , 2015-12-01
DeepLearnToolbox-master\util\softmax.m, 256 , 2015-12-01
DeepLearnToolbox-master\util\tanh_opt.m, 54 , 2015-12-01
DeepLearnToolbox-master\util\visualize.m, 1072 , 2015-12-01
DeepLearnToolbox-master\util\whiten.m, 183 , 2015-12-01
DeepLearnToolbox-master\util\zscore.m, 137 , 2015-12-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • mbdgui
    盲去卷积的算法实现,以色列人的科研论文的相关代码(Blind Deconvolution algorithm, Israel' s scientific research papers related to the code)
    2010-07-13 11:38:40下载
    积分:1
  • mulGXF
    本代码为割线法求解非线性方程组。其调用格式为[r,m]=mulGXF1(F,x0,x1,eps) 其中,F:非线性方程组;x0初始解;x1:初始解;eps:解的精度;m:迭代步数。(The code for the secant method for solving nonlinear equations. Its call format [r, m] = mulGXF1 (F, x0, x1, eps) where, F: non-linear equations x0 initial solution x1: initial solution eps: solution accuracy m: the number of iterative steps.)
    2010-01-01 14:23:22下载
    积分:1
  • simple_ode
    Hespanha混杂系统模拟仿真教程的Matlab算例4(Matlab example 4 Simulation of hybrid systems (Hespanha))
    2014-11-20 23:02:41下载
    积分:1
  • SVM
    说明:  支持向量机入门,适合初学者,写的很好,通俗有趣(Support vector machine entry, suitable for beginners, well written, popular, interesting)
    2011-03-22 23:12:16下载
    积分:1
  • muinter_powercmp_interharmonic521
    韩宁窗函数插值算法,可以计算多次谐波信号的幅度相位和频率等信息(hanning interpolation)
    2009-12-13 10:32:35下载
    积分:1
  • QPSK
    使用MZM实现QPSK,内含QPSK的星座图,输入输出图像,输出相位变化图,眼图(Achieve QPSK using MZM , containing QPSK constellation, input and output images, the phase diagram of output, eye diagram)
    2020-10-15 21:57:30下载
    积分:1
  • DFF_counter
    DFF counter matlab source code
    2009-06-23 19:20:02下载
    积分:1
  • four-filter
    线性滤波器、均值滤波器、中值滤波器、梯度倒数滤波器的matlab源程序(Linear filter, mean filter, median filter, gradient countdown of the filter matlab source)
    2012-04-27 13:05:28下载
    积分:1
  • MATLAB-GUI-instruction-Video-4
    MATLAB GUI教学视频4:Radio Button Check Box和Toggle Button的基本用法(MATLAB GUI instruction Video 4: Radio Button Check Box Toggle Button and basic usage)
    2011-07-15 11:01:22下载
    积分:1
  • music
    本程序描述了8阵元,4信号源的阵列信号处理MUSIC算法。(This procedure describes the eight array elements, four source array signal processing MUSIC algorithm.)
    2013-09-12 22:34:25下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载