登录
首页 » matlab » code1

code1

于 2021-04-03 发布
0 173
下载积分: 1 下载次数: 0

代码说明:

说明:  能够使用HAR族模型对金融市场已实现波动率进行建模和预测,并包含相应的MCS检验和DM检验代码。(Can use the har family model to model and forecast the realized volatility of financial market, and contains the corresponding MCS test and DM test code.)

文件列表:

code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\data.xlsx, 1005419 , 2018-03-12
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\DM test\Codes.txt, 5186 , 2018-03-12
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\DM test\DM test - 1M.dta, 275729 , 2017-12-02
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\DM test\DM test - 1W.dta, 279367 , 2017-12-02
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\DM test\DM test -1D.dta, 280223 , 2017-12-02
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\MCS test\R-HMAE.ox, 1966 , 2016-02-23
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\MCS test\R-MAE.ox, 1143 , 2016-02-23
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\MZ regression\mz regression -1d.wf1, 421107 , 2017-11-22
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\MZ regression\mz regression -1m.wf1, 207935 , 2017-11-23
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\MZ regression\mz regression -1w.wf1, 209993 , 2017-11-22
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\confirm.m, 248 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\Copy of HARRVTYPE.m, 19127 , 2017-11-19
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\HARRVTYPE.asv, 18563 , 2017-11-19
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\HARRVTYPE.m, 18578 , 2017-11-19
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\icss.m, 740 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\icss_step2.m, 348 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\rvdata.mat, 326911 , 2017-11-19
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\sxdicss.m, 1129 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models\xlbl.m, 124 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\confirm.m, 248 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\Copy of HARRVTYPE.m, 19127 , 2017-11-19
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\HARRVTYPE.asv, 18563 , 2017-11-19
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\HARRVTYPE.m, 18578 , 2017-11-21
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\icss.m, 740 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\icss_step2.m, 348 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\rvdata.mat, 347859 , 2017-11-21
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\sxdicss.m, 1129 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models\xlbl.m, 124 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Other benchmark models\confirm.m, 248 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Other benchmark models\HARRVTYPE.m, 27389 , 2017-11-20
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Other benchmark models\icss.m, 740 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Other benchmark models\icss_step2.m, 348 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Other benchmark models\rvdata.mat, 473418 , 2017-11-20
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Other benchmark models\sxdicss.m, 1129 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Other benchmark models\xlbl.m, 124 , 2015-12-15
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Parameter estimation\Codes.txt, 3072 , 2018-03-12
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Parameter estimation\Parameter estimation.dta, 450013 , 2018-03-12
code1\1-s2.0-S0140988318302238-mmc1.zip, 3641124 , 2019-05-28
code1\The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market.pdf, 637323 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Linear HAR models, 0 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Logarithmic HAR models, 0 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction\Other benchmark models, 0 , 2020-01-09
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\DM test, 0 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\MCS test, 0 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\MZ regression, 0 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting\Rolling window prediction, 0 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Out-of-sample forecasting, 0 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief\Parameter estimation, 0 , 2019-05-28
code1\1-s2.0-S0140988318302238-mmc1\Data in Brief, 0 , 2019-06-20
code1\1-s2.0-S0140988318302238-mmc1, 0 , 2019-05-28
code1, 0 , 2019-05-28

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 出租车模型论文为国内数学建模的试题论文.该论文获国家一等奖....
    出租车模型论文为国内数学建模的试题论文.该论文获国家一等奖.-Taxi model paper for domestic mathematical modeling of the test papers. The paper won the national first prize.
    2022-06-13 01:07:09下载
    积分:1
  • ompbox10
    说明:  ompbox10工具箱,稀疏表示做图像处理时可以使用。(ompbox10 toolbox ompbox10 toolbox ompbox10 toolbox)
    2020-07-30 15:48:39下载
    积分:1
  • MLX90614-Datasheet-Melexis
    说明:  MLX90614 description
    2019-05-06 15:06:34下载
    积分:1
  • viterbi verilog 代码生成程序,产生多项式可自由指定
    viterbi verilog 代码生成程序,产生多项式可自由指定-viterbi verilog code generation process, resulting in freedom of the specified polynomial
    2022-05-13 03:19:56下载
    积分:1
  • s1
    The ridgelet coefficients of an object f are given by analysis Application to Source Detection and Image Deconvolution", Springer, Handbook of ..... Sparse!codes. Dictionary
    2019-02-23 03:19:27下载
    积分:1
  • STED z
    根据矢量衍射理论自己编写的计算STED Z轴相位板的程序代码(The caculation of Z phase plat program base on Wolf vector theory.)
    2021-04-27 00:18:45下载
    积分:1
  • (ppt)
    胡广书的《现代信号处理教程》ppt文件,相当于电子版本了,因为很全面(Hu-book " Modern Signal Processing Guide" ppt files, the equivalent of an electronic version, because it is comprehensive)
    2020-08-01 09:48:36下载
    积分:1
  • _风力发电机组叶片故障诊断
    风机叶片的裂纹和断裂是导致风机机组事故的重要因素之一,尽早诊断出风机叶片的 故障部位与故障程度,对安全生产具有意义重大。本文将叶片振动信号作为研究对象,利用小波分解方法对其进行信号分解,并与时域和频域方法处理结果进行对比分析,得出诊断结论。仿真结果表明: 小波分解方法可以更有效的获取故障特征信号,具有较高的故障诊断率。(The crack and fracture of fan blade is one of the important factors that cause the accident of fan set. It is important for safety production to diagnose the fault location and failure degree of fan blade as soon as possible. In this paper, the vibration signal of the blade is taken as the object of study. The signal is decomposed by the wavelet decomposition method, and the results are compared with the time domain and frequency domain methods. The diagnosis conclusion is obtained. The simulation results show that the wavelet decomposition method can acquire the fault characteristic signal more effectively, and has higher fault diagnosis rate.)
    2017-06-12 23:11:20下载
    积分:1
  • 西电-印刷电路板(PCB)设计指南-0903培训
    说明:  基础PCB设计非常好的 一个资料,适合初学者入门学习使用。(Basic PCB design is a very good material, which is suitable for beginners to learn.)
    2020-12-26 16:09:16下载
    积分:1
  • interrupt controller 设计
    interrupt controller 设计-interrupt controller
    2022-01-27 20:53:08下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 29今日下载