登录
首页 » matlab » machine_learning_toolbox-develop

machine_learning_toolbox-develop

于 2020-12-15 发布
0 116
下载积分: 1 下载次数: 1

代码说明:

说明:  实现特征降维以及完成多分类的任务。可自行组合分类器(Realize feature dimensionality reduction and multiple classification.)

文件列表:

machine_learning_toolbox-develop, 0 , 2015-10-26
machine_learning_toolbox-develop\.gitignore, 16 , 2015-10-26
machine_learning_toolbox-develop\README.md, 587 , 2015-10-26
machine_learning_toolbox-develop\displayDataStructure.m, 1826 , 2015-10-26
machine_learning_toolbox-develop\src, 0 , 2015-10-26
machine_learning_toolbox-develop\src\CPA, 0 , 2015-10-26
machine_learning_toolbox-develop\src\CPA\ex7_pca.m, 7228 , 2015-10-26
machine_learning_toolbox-develop\src\CPA\findNbEigenVectorsToKeepPrecisionOf.m, 278 , 2015-10-26
machine_learning_toolbox-develop\src\CPA\pca.m, 884 , 2015-10-26
machine_learning_toolbox-develop\src\CPA\projectData.m, 967 , 2015-10-26
machine_learning_toolbox-develop\src\CPA\recoverData.m, 1066 , 2015-10-26
machine_learning_toolbox-develop\src\CPA\varianceKeptForANumberOfEigenVector.m, 134 , 2015-10-26
machine_learning_toolbox-develop\src\K_mean, 0 , 2015-10-26
machine_learning_toolbox-develop\src\K_mean\computeCentroids.m, 1298 , 2015-10-26
machine_learning_toolbox-develop\src\K_mean\ex7.m, 5608 , 2015-10-26
machine_learning_toolbox-develop\src\K_mean\findClosestCentroids.m, 1169 , 2015-10-26
machine_learning_toolbox-develop\src\K_mean\kMeansInitCentroids.m, 793 , 2015-10-26
machine_learning_toolbox-develop\src\K_mean\plotDataPoints.m, 434 , 2015-10-26
machine_learning_toolbox-develop\src\K_mean\plotProgresskMeans.m, 840 , 2015-10-26
machine_learning_toolbox-develop\src\K_mean\runkMeans.m, 1974 , 2015-10-26
machine_learning_toolbox-develop\src\SVM, 0 , 2015-10-26
machine_learning_toolbox-develop\src\SVM\ex6.m, 4126 , 2015-10-26
machine_learning_toolbox-develop\src\SVM\ex6_spam.m, 4593 , 2015-10-26
machine_learning_toolbox-develop\src\SVM\gaussianKernel.m, 720 , 2015-10-26
machine_learning_toolbox-develop\src\SVM\linearKernel.m, 323 , 2015-10-26
machine_learning_toolbox-develop\src\SVM\svmPredict.m, 1669 , 2015-10-26
machine_learning_toolbox-develop\src\SVM\svmTrain.m, 5964 , 2015-10-26
machine_learning_toolbox-develop\src\SVM\visualizeBoundary.m, 823 , 2015-10-26
machine_learning_toolbox-develop\src\SVM\visualizeBoundaryLinear.m, 410 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers, 0 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging), 0 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging)\TP01-Bagging.pdf, 107811 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging)\classifiersLearning.m, 621 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging)\classifiersPredict.m, 1889 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging)\classifiersTest.m, 601 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging)\drawBootstrap.m, 437 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging)\main.m, 1963 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging)\skew.mat, 7887 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\1.ensembleClassifier(bagging)\skewness.m, 139 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting), 0 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\TP02-boosting.pdf, 161876 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\adaboostLearn.m, 2160 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\adaboostM1Learn.m, 2226 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\adaboostM1Main.m, 1061 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\adaboostM1Pred.m, 1707 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\adaboostM1Test.m, 453 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\adaboostMain.m, 1134 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\adaboostPred.m, 771 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\2.ensembleClassifier(boosting)\adaboostTest.m, 446 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest), 0 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation, 0 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\drawBootstrap.m, 433 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\rfLearning.m, 2073 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\rfPredict.m, 339 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\rfTest.m, 551 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\test_rf.m, 1146 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\test_tree.m, 764 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\treeLearning.m, 3238 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\treePredict.m, 588 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\treeSplitting.m, 2521 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\implementation\treeTest.m, 380 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources, 0 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\rfLearning.m, 1569 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\rfPredict.m, 53 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\rfTest.m, 407 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\test_rf.m, 523 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\test_tree.m, 371 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\treeLearning.m, 3241 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\treePredict.m, 345 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\treeSplitting.m, 2292 , 2015-10-26
machine_learning_toolbox-develop\src\ensembles_classifiers\3.ensembleClassifier(random_forest)\sources\treeTest.m, 243 , 2015-10-26
machine_learning_toolbox-develop\src\linear_regression, 0 , 2015-10-26
machine_learning_toolbox-develop\src\linear_regression\ex1_multi.m, 5340 , 2015-10-26
machine_learning_toolbox-develop\src\linear_regression\ex5.m, 6720 , 2015-10-26
machine_learning_toolbox-develop\src\linear_regression\gradientDescentMulti.m, 1089 , 2015-10-26
machine_learning_toolbox-develop\src\linear_regression\learningCurve.m, 2597 , 2015-10-26
machine_learning_toolbox-develop\src\linear_regression\linearRegCostFunction.m, 1113 , 2015-10-26
machine_learning_toolbox-develop\src\linear_regression\normalEqn.m, 669 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression, 0 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\ex2.m, 3722 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\ex2_reg.m, 2973 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\ex3_oneVSall.m, 2108 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\findOptimizedLambda.m, 510 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\lrCostFunction.m, 1932 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\mapFeature.m, 508 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\oneVsAll.m, 2073 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\predict.m, 755 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\predictOneVsAll.m, 1523 , 2015-10-26
machine_learning_toolbox-develop\src\logistic_regression\sigmoid.m, 450 , 2015-10-26
machine_learning_toolbox-develop\src\main.m, 10127 , 2015-10-26
machine_learning_toolbox-develop\src\tools, 0 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master, 0 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master\.travis.yml, 249 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master\CAE, 0 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master\CAE\caeapplygrads.m, 1219 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master\CAE\caebbp.m, 917 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master\CAE\caebp.m, 1011 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master\CAE\caedown.m, 259 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master\CAE\caeexamples.m, 754 , 2015-10-26
machine_learning_toolbox-develop\src\tools\DeepLearnToolbox-master\CAE\caenumgradcheck.m, 3618 , 2015-10-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 实验一 BP神经网络数据分类
    说明:  采用BP神经网络对文本成绩进行分类,附有成绩文本数据,易于更改。(BP neural network is used to classify text scores, with text data of scores, which is easy to change.)
    2020-06-16 11:40:01下载
    积分:1
  • 序包含一个Socket派生类和一个演示广播…
    该程序包含一个用于广播的Socket派生类和一个演示实例!-The program contains a broadcasting for the Socket derived class and a demonstration examples!
    2022-03-14 16:30:57下载
    积分:1
  • OReilly---Programming-with-Microsoft-Visual-CPP-
    O Reilly - Programming with Microsoft Visual C++ .NET 6th Edition
    2012-09-24 17:40:49下载
    积分:1
  • Mine-sweeping
    个人收集的一个纯AS实现的MVC架构版本的扫雷游戏,帮助你了解MVC架构。。(Personal collection of a pure MVC architecture to achieve AS version minesweeper game, to help you understand MVC architecture. .)
    2013-12-30 21:01:17下载
    积分:1
  • 又一个留言薄系统,空间占用仅990K,可谓小巧,但功能还是挺多的,试用于新手建站用...
    又一个留言薄系统,空间占用仅990K,可谓小巧,但功能还是挺多的,试用于新手建站用-also a thin voice mail system, the space occupied by only 990K, is small, but functional or sport the trial with the establishment of the station in the novice
    2022-01-28 23:18:43下载
    积分:1
  • 类似windows的net send功能的给其他windows机器发送消息的序,其他机器不需要安装序也可以收到消息...
    类似windows的net send功能的给其他windows机器发送消息的程序,其他机器不需要安装程序也可以收到消息-A program in which message can be sent to others windows machine as like windows`s net sending function , and other machines can receive messages without installing this program
    2022-03-19 07:17:47下载
    积分:1
  • zifing7768
    labview 自定义控件,可以美化labview界面,这些控件有iPhone系列的,也有常用的如MP3按键类,大部分是(LabVIEW custom controls, you can beautify the LabVIEW interface, these controls have iPhone series, but also commonly used, such as MP3 button class, mostly)
    2017-07-05 17:23:07下载
    积分:1
  • SSIM
    说明:  基于结构相似性SSIM的图像质量评价方法是通过两幅图像的亮度、对比度以及结构相似度的对比来实现评价效果的。(The method of image quality evaluation based on SSIM is to achieve the evaluation effect by comparing the brightness, contrast and structure similarity of two images.)
    2020-06-04 19:08:06下载
    积分:1
  • DD_LS
    说明:  对信道进行LS信道估计,并使用Decision-Directed的方式进行降噪。(Channel Estimation Decision Directed)
    2020-08-28 12:23:16下载
    积分:1
  • 象棋识别
    说明:  工作是棋盘图像二值化和棋子识别。针对棋盘全局二值化存在的问题,提出了基于相邻像素灰度差阈值的棋盘图像二值化方法。(The work is to binarize the chessboard image and recognize the chessboard. Aiming at the problem of global binarization of chessboard, a method of binarization of chessboard image based on gray difference threshold of adjacent pixels is proposed.)
    2021-02-05 13:39:58下载
    积分:1
  • 696518资源总数
  • 104388会员总数
  • 18今日下载