登录
首页 » Others » 未编码,汉明码 ,循环码及卷积码性能比较

未编码,汉明码 ,循环码及卷积码性能比较

于 2020-12-12 发布
0 234
下载积分: 1 下载次数: 3

代码说明:

基于MATLAB通过对未编码,汉明码 ,循环码及卷积码的信噪比进行比较,比较它们之间的性能

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 系统辨识大牛Ljung写的MATLAB系统辨识使用手册
    系统辨识大牛Ljung编写的MATLAB系统辨识使用手册,这本书详细地介绍了在MATLAB已经所属simulink环境下,系统辨识工具箱的一些使用办法,是一本非常经典的教材!Revision Historypril 1988First printingJuly 1991Second printingMay1995Third printingNovember 2000 Fourth printingRevised for Version 5.0(Release 12)pril 2001Fifth printingJuly 2002Online onlyRevised for Version 5.0.2 Release 13)June 2004Sixth printingRevised for Version 6.0.1(Release 14)March 2005Online onlyRevised for Version 6.1.1Release 14SP2)September 2005 Seventh printingRevised for Version 6.1.2(Release 14SP3)March 2006Online onlyRevised for Version 6.1.3(Release 2006a)September 2006 Online onlyRevised for Version 6.2 Release 2006b)March 2007Online onlyRevised for Version 7.0 ( Release 2007a)September 2007 Online onlyRevised for Version 7.1 (Release 2007bMarch 2008Online onlyRevised for Version 7.2(Release 2008a)October 2008Online onlyRevised for Version 7.2.1 Release 2008b)March 2009Online onlyRevised for Version 7.3(Release 2009a)September 2009 Online onlyRevised for Version 7.3.1(Release 2009b)March 2010Online onlyRevised for Version 7. 4 (Release 2010a)eptember2010 Online onlyRevised for Version 7.4.1(Release 2010b)pril 2011Online onlRevised for Version 7.4.2(Release 2011a)September 2011 Online onlyRevised for Version 7.4.3(Release 2011b)March 2012Online onlyRevised for Version 8.0( Release 2012aabout the DevelopersAbout the Developersystem Identification Toolbox software is developed in association with thefollowing leading researchers in the system identification fieldLennart Ljung. Professor Lennart Ljung is with the department ofElectrical Engineering at Linkoping University in Sweden. He is a recognizedleader in system identification and has published numerous papers and booksin this areaQinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut Nationalde recherche en Informatique et en Automatique(INria) and at Institut deRecherche en Informatique et systemes Aleatoires (Irisa), both in rennesFrance. He conducts research in the areas of nonlinear system identificationfault diagnosis, and signal processing with applications in the fields of energyautomotive, and biomedical systemsPeter Lindskog. Dr. Peter Lindskog is employed by nira dynamiAB, Sweden. He conducts research in the areas of system identificationsignal processing, and automatic control with a focus on vehicle industryapplicationsAnatoli Juditsky. Professor Anatoli Juditsky is with the laboratoire JeanKuntzmann at the Universite Joseph Fourier, Grenoble, france. He conductsresearch in the areas of nonparametric statistics, system identification, andstochastic optimizationAbout the developersContentsChoosing Your System Identification ApproachLinear model structures1-2What Are Model objects?Model objects represent linear systemsAbout model data1-5Types of Model objectsDynamic System Models1-9Numeric Models1-11umeric Linear Time Invariant (LTD Models1-11Identified LTI modelsIdentified Nonlinear models1-12Nonlinear model structures1-13Recommended Model Estimation Sequence1-14Supported Models for Time- and Frequency-DomainData,,,,,,,1-16Supported Models for Time-Domain Data1-16Supported Models for Frequency-Domain Data1-17See also1-18Supported Continuous-and Discrete-Time Models1-19Model estimation commands1-21Creating Model Structures at the command Line ... 1-22about system Identification Toolbox Model Objects ... 1-22When to Construct a Model Structure Independently ofEstimation1-23Commands for Constructing Model Structures1-24Model Properties1-25See als1-27Modeling Multiple-Output Systems ......... 1-28About Modeling multiple-Output Systems1-28Modeling Multiple Outputs Directly1-29Modeling multiple outputs as a Combination ofSingle-Output Models.......1-29Improving Multiple-Output Estimation Results byWeighing Outputs During Estimation ....... 1-30Identified linear Time-Invariant models1-32IDLTI Models1-32Configuration of the Structure of Measured and Noise oRepresentation of the Measured and noise Components foVarious model Types1-33Components ....1-35Imposing Constraints on the Values of ModeParameters1-37Estimation of Linear models1-8Data Import and Processing2「Supported Data ...2-3Ways to Obtain Identification DataWays to Prepare Data for System Identification ... 2-6Requirements on Data SamplingRepresenting Data in MATLAB Workspace·····Time-Domain Data Representation2-9Time-Series Data Representation2-10ContentsFrequency-Domain Data Representation ....... 2-11Importing Data into the Gui2-17Types of Data You Can import into the GUi2-17Importing time-Domain Data into the GUI2-18Importing Frequency-Domain Data into the GUI2-22Importing Data Objects into the GUI ......... 2-30Specifying the data sampling interval2-34Specifying estimation and validation Data2-35Preping data Using Quick StartCreating Data Sets from a Subset of Signal Channelo2-362-37Creating multiexperiment Data Sets in the gUi2-39Managing data in the gui ............. 2-46Representing Time- and Frequency-Domain Data Usingiddata object2-55iddata constructor2-55iddata Properties.........2-58Creating Multiexperiment Data at the Command Line .. 2-61Select Data Channels, I/O Data and Experiments in iddataObjects2-63Increasing Number of Channels or Data Points of iddataObjects2-67Managing iddata Objects2-69Representing Frequency-Response Data Using idfrdObiec2-76idfrd Constructor2-76idfrd Properties2-77Select I/o Channels and Data in idfrd Objects ..... 2-79Adding Input or Output Channels in idfrd Objects2-80Managing idfrd Objects2-83Operations That Create idfrd Objects2-83Analyzing Data quality2-85Is your data ready for modeling?2-85Plotting Data in the guI Versus at the command line2-86How to plot data in the gui2-86How to plot data at the command line2-92How to Analyze Data Using the advice Command2-94Selecting Subsets of Data2-96IXWhy Select Subsets of Data?2-96Extract Subsets of Data Using the GUI2-97Extract Subsets of data at the Command Line2-99Handling Missing Data and outliers2-100Handling missing data2-100Handling outliers2-101Extract and Model Specific Data Segments2-102See also2-103Handling offsets and Trends in Data2-104When to detrend data2-104Alternatives for Detrending Data in GUi or at theCommand-Line2-105Next Steps After detrending2-107How to Detrend Data Using the Gui2-108How to detrend data at the Command line2-109Detrending Steady-State Dat109cending transient Dat2-109See also2-110Resampling Data2-111What Is resampling?...,,.,,,,,,,,,,,.2-111Resampling data without Aliasing Effects2-112See also2-116Resampling data Using the GUi.,,,,2-117Resampling Data at the Command line2-118Filtering Data2-120Supported Filters2-120Choosing to Prefilter Your Data2-120See also2-121How to Filter Data Using the gui2-122Filtering Time-Domain Data in the GuI........ 2-122Content
    2020-12-11下载
    积分:1
  • 相机位姿估计1:根据四个特征点估计相机姿态 随文Demo
    相机位姿估计1:根据四个特征点估计相机姿态 随文Demo使用opencv基于特征点估计位姿
    2020-12-11下载
    积分:1
  • DarkComet RAT 5.3.1汉化版
    DarkComet 5.3.1 汉化版5.3.1 是最终版 相信国内很多爱好者 都喜欢这款远控 功能强大
    2020-12-07下载
    积分:1
  • 设备联机检测(上线、下线、数据传输)源码
    检测设备是否联机。状态、数据获取;数据传输检验
    2020-12-02下载
    积分:1
  • 基于Linux消息队列的简易聊天室(C语言)(附源代码)
    采用客户-服务器结构,其中服务器实现各个用户的登录并存储相关信息,客户端通过服务器端获取当前登录用户信息,然后各客户进程通过消息队列实现双向通信。 Linux IPC通信利用消息队列消息机制,多线程通信,字符串处理,链表操作,信号简单处理。消息队列是System V支持一种IPC机制,通过类似链表的操作向一个FIFO里通过msgsnd发送用户自定义数据,进程可以通过msgrcv来接收指定类似mtype的数据,从而实现进程间通信。在服务器端实现广播功能,以及服务器退出以后通知;所有客户端退出并删除消息队列功能;对所有客户端的统计由链表实现在客户端实现:上线提醒,下线提醒,服务器断线后
    2020-12-04下载
    积分:1
  • 单片机水塔水位控制系统课设计proteus仿真
    单片机课程设计 水塔水位最高点和最低点控制 故障报警 其中有proteus仿真电路文件 keil程序 课程设计word报告
    2020-12-04下载
    积分:1
  • python实现CNN中文文本分类
    CNN 中文文本挖掘 文本分类 python 深度学习 机器学习
    2020-12-06下载
    积分:1
  • hough变换检测圆
    检测直线,检测椭圆,检测圆 MATLAB 霍夫变换
    2020-12-08下载
    积分:1
  • svmpredict.mexw64 svmtrain.mexw64 及c文件
    svmpredic.c svmtrain.c svmpredict.mexw64 svmtrain.mexw64
    2020-12-07下载
    积分:1
  • 数据挖掘在淘宝卖家评论中的应用
    数据挖掘在淘宝卖家评论中的应用,数据挖掘和文本挖掘实例
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 29今日下载