登录
首页 » Others » 流形学习算法matlab编写

流形学习算法matlab编写

于 2020-12-12 发布
0 135
下载积分: 1 下载次数: 3

代码说明:

流形学习中的LLE IOSMAP等8个算法,matlab编写

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 多特征融合的目标跟踪
    该PPT为视觉目标跟踪算法中的多特征融合的目标跟踪的PPT。
    2020-12-03下载
    积分:1
  • ERP项目部员工述职报告
    SAP Administrator的年度总结报告,很有用哦
    2021-05-07下载
    积分:1
  • sscom5.13.1超好用的调试工具串口-TCP等
    sscom5.13.1超好用的调试工具串口-TCPserver 等等,可以切换保存发送数据内容
    2020-12-09下载
    积分:1
  • 贝叶斯统计
    优秀的贝叶斯统计学入门教材,简单明了,包含贝叶斯统计学的思想精华,值得一看高等院校统叶学写业规划教材贝叶斯统计峁诗松編著中团先计齿坂社京)新登字041号图书在版编目(CP数据贝叶斯统计/茆诗松编著一北京:中国统计出版衬,1999.9高等院校统计学规划教材ISN75037-29309.茆QI.贝叶斯统计-高等学校-教材IV.0212中国版本图惊CIP数据核字(1999第10216号作者虾诗松贲狂编辑/军责任校对:刘开颜封面设计:张建民出版发行中国统计版社通信地址/北京市二里河月坛街7号邮政编码09826办公地址/北点市丰台区哐三坏南路甲6号电话09)63459084、6326660(发行部印刷科伦克三莱印务(北京)有限公司经钠/新华书店斤本850×116mm132子数6千子印张{8.6印数/1-5)(册版别/上9910月第1版版次19作10月第1次印刷节号/SRN7-5037-2939.34定价15.6元中国统汁版图书,版权所有,侵权必究中国统计版图书,如有印装错误,本社发行部负责调换出版诜明“九五”期闾是我国社会主义市场经濟体制逐步完著和发展重要时期,一方面,随着髙等教育体制改革和统计改革的深入发展,对统计教育模式和统计人才培养目标都提出新的要求,另一方面科学技术的飞速发展也促使统计技术发生了重大交革,新理论、新方法畑新技穴不断涌现并被应用于统计实践活应这新形勢的需要,全国统计教树编审委员会制定了《1996-200年国统计教树建设规划》,根据《规划》的要求,编委会采取招标的方式组织全国有关院校的专家、学者编写了这批统计学专业“规教材”。这批教材力求以邓小理论为指早,在总结“八五”蝴间规捌统计教材建设经验的基础上,认真贯彻以下原则:①理论紧密联系实际的原则;巴解放思想、转变观念、大脰探索、努亦创新的原则;正确处理继承与发展关系的原则。通过不懈努力,把这批教材建设成为质量高,迺应性預、面向21世纪的新教材扫信通过这批教材的出版、发行;对推动我国统计教育改革和加快更新、改造我国统计教材体系、教村内容的岁伐将起到积极的促进作用,同时对我国统计教材建设也将起到較好的示范、导向作用。限于水平和经验这批教材的编宇、出版工作还会有缺点和不足处,诚恳欢迎教杖的使用单位、广大教师和同学们提出批评和建议全国統计教材編审委员会999年3月本书是按照全囯统计斆材编审委员会指定的《頃叶斯统计》編与大纲鳊写的,是供全倒商等学校玩计专业大学生知研究生学的教科与。贝叶斯统计在近50年中发展很快,内睿愈来食丰窨。这盟只选用其中最基不鄙分构成本书,相当一学期的肉容,本节力图疴学汀过传统的概率统计(颎率学派)课程的学生展示贝汁斯汽计的基本面貌,也使他们能了解员叶斯统计的基本思想,掌握叶疬统计的基本方法,为在实际中使用和研究贝叶斯统计打下了苠好的基础木书共六章,可分二部分。前三章国绕先验分布介绍贝叶所推断方法。后三章绕损失函数介绍贝叶斯决策方法。阅读这些内容仅需要攪率统计基本知识就部了。本书力剂利生劢衣趣的例于来说明贝"斯统计的基本想想和基本方法,尽量使读老对贝叶药统计产生兴趣,引发读者使用以叶斯方法去认识和解洪实际问题的望。进而云丰瘩和发展队叶蜥统计。假如学生的兴趣被钧出来,愿望被引出来,那么讲授这一门课的目的也基本达到贝叶斯统计是在与经典统计的争论中逐渐发展起来的。争论的闩题有:末知參数是酉可以看作随机变量?事件的慨率是否一定要有频率解释?概率是否可用经验兴确定?在这些河题的争论中贝叶斯学派建立起自已的理论与,在全球传播三有百年史的经與统计对统讦学的发展稗应屎起了巨大佐用,钽时乜暴露了一些问题。在小祥本问研究二、在区估计的解释}、在似然原理釣认识上等问题经典统计也受到只圬斯学派的评,在这出批评中贝叶斯学派也在不断完善叶斯计计决策论斯分析》一书在1980年和1985年熠继二畈问世把贝叶斯统计作了较完塾的叙述。在近20中只吐浙统计在实际中叉获得广泛的应用,I991年和I995年在美国连续岀版了二本《 Case studies in Bayesian Statistics》。使贝叶斯纨十在理论上刘实际上以及它们的结合上都得到了长足的发展。惧怕使用贝叶斯统计思想得到克服。如今贝汁斯统计也定进教室,打破经典统计独占教室的一统天下的局面,这不能不说是贝吽斯统计发展中的一些重要标志。贝叶斯统计已成为统计学中一个不可缺少的部分,相陀之下,贝叶斯统计在我国射应用与发展岢属起步阶長,但我厨有很好的发展叶斯统计的氛围。只要大家努力,如汁斯统计在我国一定能迅速发展,跟上世界主流。本书编写卣始至终得到国冢统计局教育中心的关心和帮助,有他们的督促,本书还会延期出版。上海财经大学张尧庭教授和中国人民大学的吴喜之教授耐心细致地审阅了全书,提出许多贵意见,笔者都认真考虑,并作修改.这使仝书增色不少。另外,何基报、硬娟、孙汊杰等阅读书稿,提出宇贵意见,还帮助打印会书,在此一并表丞感谢由于繃者水平有限,淮确表达只叶斯学派的各种观点并非易辜、错谬之处在所难凭,恳请国内同行和广大读若批评指正茆许松1999年1月30日2第·章先验分布与后验分布种信息总体信息样本信贝叶斯公式信息贝叶斯公式的密度函数形式共细女辱粉分在是三种信息的综合、共轭先验分布、后验分布的计算、共轭先验分布的优缺点四、常用的共轭先验分布超参数及其确定一、利用先验矩、利用完验分位数、利用验矩和先验分位数四、其它方法多参数模型充分统计量习题第二章贝叶斯推断条件方法佔计贝叶斯估计、贝叶斯估计的误差区间估计可信区间最大后验密度可信区间假设检验假设检验、贝叶斯因子三、简单假设对简单假设Q⊙四、复杂假设e对复杂假设回五、简单原假设对复杂的备择假设预测似然原理第三章先验分布的确定主观概率主观概率确定主观概率的方法利用先验信息确定先验分布、直方图法二、选定先验密度函数形式再估计其超参教三、定分度法与变分度法利用边缘分布确定先验密度、边缘分布二、混合分布、先验选择的四、先验选择的矩方法无信息先验分布贝叶斯假设一、位置参数的无信息先验尺度参数的无信息先验信息阵确定无信息先验多层先验多层先验、多层模型习题第四章泆策中的收益、损失与效用决策问趣的三妻素决策问题决策问题的三素决策准贝行动的容许性决策准则先验期望准则先验期望准则、两个性质损失函数从收益到损失、损大凶数损大凶数下的悲观准则四、损失凶数下的先验期望准则常用损失函数效用函数效用和效用函数效用的测定效用尺度四、常见的效用曲线五、用效用函数作决策的例子六、从效用到损失第五章贝叶斯决策贝叶斯决策问题后验风险准则验风殓决策函数后验风险准则常用损失数下的贝叶斯估计方损失函数下的贝叶斯估计二、线性损失函数下的贝叶斯估计限个行动问趣的假设检验抽样信息期望值完全信息期望值抽样信息期望值最佳样本量的确定抽样净益最佳样本量及其上界最佳样本量的求二行动线性决簧问题的正态分布下二行动线性决策问题的先验仄塔分布下二行动线性决策问题的先验、伽冯分布下二行动线性决策问题的先验习题第六章统计决策理论风险函数风险函数决策函数的最优性、统计决策中的点估计问题四、统计决策中的区间估计问题五、统计决策中的假没检验问题容许性、决策函数的容许性最小最大准则、最小最大准则最小最大估计的容许性贝叶斯风险贝叶斯风险贝叶期风险准则与后验风险准则的等价性贝叶期估计的性质俯录常用概率分布表附录标准正态分布函数Φ7表参考文献附录页录第一章先验分布与后验分布(1§1.]二种片息总体信息样本信2)、无验信息……公】.2贝叶斯公式………、贝叶斯公式的密度燃数形式(6)厅验分布是三种倍息的综合(8〕共轭先验分布…………〔13轭先验介布13、后验分布的计算甲血1■■日血血■D■三、共轭先验分布的优缺点、常用的共轲先验分布由■冒血…(19超郄数及其确定……利用光验矩、利用先验分位数三、利用先验矩和先验分位数…………阿、其它方法多参数模型1.6充分统计t……甲看省看甲『看■p甲P看■2031第二章贝叶斯推断2.1条件方法§2.2秸计36贝时斯估计
    2021-05-07下载
    积分:1
  • HTML5捕鱼达人源码
    HTML5实现网页版捕鱼达人游戏,画面代码有注释的。
    2020-12-10下载
    积分:1
  • 凸优化在信号处理与通信中的应用Convex Optimization in Signal Processing and Communications
    凸优化理论在信号处理以及通信系统中的应用 比较经典的通信系统凸优化入门教程ContentsList of contributorspage IxPrefaceAutomatic code generation for real- time convex optimizationJacob Mattingley and stephen Boyd1.1 Introduction1.2 Solvers and specification languages61. 3 Examples121. 4 Algorithm considerations1.5 Code generation261.6 CVXMOD: a preliminary implementation281.7 Numerical examples291. 8 Summary, conclusions, and implicationsAcknowledgments35ReferencesGradient-based algorithms with applications to signal-recoveryproblemsAmir beck and marc teboulle2.1 Introduction422.2 The general optimization model432.3 Building gradient-based schemes462. 4 Convergence results for the proximal-gradient method2.5 A fast proximal-gradient method2.6 Algorithms for l1-based regularization problems672.7 TV-based restoration problems2. 8 The source-localization problem772.9 Bibliographic notes83References85ContentsGraphical models of autoregressive processes89Jitkomut Songsiri, Joachim Dahl, and Lieven Vandenberghe3.1 Introduction893.2 Autoregressive processes923.3 Autoregressive graphical models983. 4 Numerical examples1043.5 Conclusion113Acknowledgments114References114SDP relaxation of homogeneous quadratic optimization: approximationbounds and applicationsZhi-Quan Luo and Tsung-Hui Chang4.1 Introduction1174.2 Nonconvex QCQPs and sDP relaxation1184.3 SDP relaxation for separable homogeneous QCQPs1234.4 SDP relaxation for maximization homogeneous QCQPs1374.5 SDP relaxation for fractional QCQPs1434.6 More applications of SDP relaxation1564.7 Summary and discussion161Acknowledgments162References162Probabilistic analysis of semidefinite relaxation detectors for multiple-input,multiple-output systems166Anthony Man-Cho So and Yinyu Ye5.1 Introduction1665.2 Problem formulation1695.3 Analysis of the SDr detector for the MPsK constellations1725.4 Extension to the Qam constellations1795.5 Concluding remarks182Acknowledgments182References189Semidefinite programming matrix decomposition, and radar code design192Yongwei Huang, Antonio De Maio, and Shuzhong Zhang6.1 Introduction and notation1926.2 Matrix rank-1 decomposition1946.3 Semidefinite programming2006.4 Quadratically constrained quadratic programming andts sdp relaxation201Contents6.5 Polynomially solvable QCQP problems2036.6 The radar code-design problem2086.7 Performance measures for code design2116.8 Optimal code design2146.9 Performance analysis2186.10 Conclusions223References226Convex analysis for non-negative blind source separation withapplication in imaging22Wing-Kin Ma, Tsung-Han Chan, Chong-Yung Chi, and Yue Wang7.1 Introduction2297.2 Problem statement2317.3 Review of some concepts in convex analysis2367.4 Non-negative, blind source-Separation criterion via CAMNS2387.5 Systematic linear-programming method for CAMNS2457.6 Alternating volume-maximization heuristics for CAMNS2487.7 Numerical results2527.8 Summary and discussion257Acknowledgments263References263Optimization techniques in modern sampling theory266Tomer Michaeli and yonina c. eldar8.1 Introduction2668.2 Notation and mathematical preliminaries2688.3 Sampling and reconstruction setup2708.4 Optimization methods2788.5 Subspace priors2808.6 Smoothness priors2908.7 Comparison of the various scenarios3008.8 Sampling with noise3028. 9 Conclusions310Acknowledgments311References311Robust broadband adaptive beamforming using convex optimizationMichael Rubsamen, Amr El-Keyi, Alex B Gershman, and Thia Kirubarajan9.1 Introduction3159.2 Background3179.3 Robust broadband beamformers3219.4 Simulations330Contents9.5 Conclusions337Acknowledgments337References337Cooperative distributed multi-agent optimization340Angelia Nedic and asuman ozdaglar10.1 Introduction and motivation34010.2 Distributed-optimization methods using dual decomposition34310.3 Distributed-optimization methods using consensus algorithms35810.4 Extensions37210.5 Future work37810.6 Conclusions38010.7 Problems381References384Competitive optimization of cognitive radio MIMO systems via game theory387Gesualso Scutari, Daniel P Palomar, and Sergio Barbarossa11.1 Introduction and motivation38711.2 Strategic non-cooperative games: basic solution concepts and algorithms 39311.3 Opportunistic communications over unlicensed bands411.4 Opportunistic communications under individual-interferenceconstraints4151.5 Opportunistic communications under global-interference constraints43111.6 Conclusions438Ackgment439References43912Nash equilibria: the variational approach443Francisco Facchinei and Jong-Shi Pang12.1 Introduction44312.2 The Nash-equilibrium problem4412. 3 EXI45512.4 Uniqueness theory46612.5 Sensitivity analysis47212.6 Iterative algorithms47812.7 A communication game483Acknowledgments490References491Afterword494Index49ContributorsSergio BarbarossaYonina c, eldarUniversity of rome-La SapienzaTechnion-Israel Institute of TechnologyHaifaIsraelAmir beckTechnion-Israel instituteAmr El-Keyiof TechnologyAlexandra universityHaifEgyptIsraelFrancisco facchiniStephen boydUniversity of rome La sapienzaStanford UniversityRomeCaliforniaItalyUSAAlex b, gershmanTsung-Han ChanDarmstadt University of TechnologyNational Tsing Hua UniversityDarmstadtHsinchuGermanyTaiwanYongwei HuangTsung-Hui ChangHong Kong university of scienceNational Tsing Hua Universityand TechnologyHsinchuHong KongTaiwanThia KirubarajanChong-Yung chiMcMaster UniversityNational Tsing Hua UniversityHamilton ontarioHsinchuCanadaTaiwanZhi-Quan LuoJoachim dahlUniversity of minnesotaanybody Technology A/sMinneapolisDenmarkUSAList of contributorsWing-Kin MaMichael rebsamenChinese University of Hong KongDarmstadt UniversityHong KonTechnologyDarmstadtAntonio de maioGermanyUniversita degli studi di napoliFederico iiGesualdo scutariNaplesHong Kong University of Sciencealyand TechnologyHong KongJacob MattingleyAnthony Man-Cho SoStanford UniversityChinese University of Hong KongCaliforniaHong KongUSAJitkomut songsinTomer michaeliUniversity of californiaTechnion-Israel instituteLoS Angeles. CaliforniaogyUSAHaifaMarc teboulleTel-Aviv UniversityAngelia NedicTel-AvUniversity of Illinois atIsraelUrbana-ChampaignInoSLieven VandenbergheUSAUniversity of CaliforniaLos Angeles, CaliforniaUSAAsuman OzdaglarMassachusetts Institute of TechnologyYue WangBoston massachusettsVirginia Polytechnic InstituteUSAand State UniversityArlingtonDaniel p palomarUSAHong Kong University ofScience and TechnologyYinyu YeHong KongStanford UniversityCaliforniaong-Shi PangUSAUniversity of illinoisat Urbana-ChampaignShuzhong zhangIllinoisChinese university of Hong KongUSAHong KongPrefaceThe past two decades have witnessed the onset of a surge of research in optimization.This includes theoretical aspects, as well as algorithmic developments such as generalizations of interior-point methods to a rich class of convex-optimization problemsThe development of general-purpose software tools together with insight generated bythe underlying theory have substantially enlarged the set of engineering-design problemsthat can be reliably solved in an efficient manner. The engineering community has greatlybenefited from these recent advances to the point where convex optimization has nowemerged as a major signal-processing technique on the other hand, innovative applica-tions of convex optimization in signal processing combined with the need for robust andefficient methods that can operate in real time have motivated the optimization commu-nity to develop additional needed results and methods. The combined efforts in both theoptimization and signal-processing communities have led to technical breakthroughs ina wide variety of topics due to the use of convex optimization This includes solutions tonumerous problems previously considered intractable; recognizing and solving convex-optimization problems that arise in applications of interest; utilizing the theory of convexoptimization to characterize and gain insight into the optimal-solution structure and toderive performance bounds; formulating convex relaxations of difficult problems; anddeveloping general purpose or application-driven specific algorithms, including thosethat enable large-scale optimization by exploiting the problem structureThis book aims at providing the reader with a series of tutorials on a wide varietyof convex-optimization applications in signal processing and communications, writtenby worldwide leading experts, and contributing to the diffusion of these new developments within the signal-processing community. The goal is to introduce convexoptimization to a broad signal-processing community, provide insights into how convexoptimization can be used in a variety of different contexts, and showcase some notablesuccesses. The topics included are automatic code generation for real-time solvers, graphical models for autoregressive processes, gradient-based algorithms for signal-recoveryapplications, semidefinite programming(SDP)relaxation with worst-case approximationperformance, radar waveform design via SDP, blind non-negative source separation forimage processing, modern sampling theory, robust broadband beamforming techniquesdistributed multiagent optimization for networked systems, cognitive radio systems viagame theory, and the variational-inequality approach for Nash-equilibrium solutionsPrefaceThere are excellent textbooks that introduce nonlinear and convex optimization, providing the reader with all the basics on convex analysis, reformulation of optimizationproblems, algorithms, and a number of insightful engineering applications. This book istargeted at advanced graduate students, or advanced researchers that are already familiarwith the basics of convex optimization. It can be used as a textbook for an advanced graduate course emphasizing applications, or as a complement to an introductory textbookthat provides up-to-date applications in engineering. It can also be used for self-study tobecome acquainted with the state of-the-art in a wide variety of engineering topicsThis book contains 12 diverse chapters written by recognized leading experts worldwide, covering a large variety of topics. Due to the diverse nature of the book chaptersit is not possible to organize the book into thematic areas and each chapter should betreated independently of the others. a brief account of each chapter is given nextIn Chapter 1, Mattingley and Boyd elaborate on the concept of convex optimizationin real-time embedded systems and automatic code generation. As opposed to genericsolvers that work for general classes of problems, in real-time embedded optimization thesame optimization problem is solved many times, with different data, often with a hardreal-time deadline. Within this setup the authors propose an automatic code-generationsystem that can then be compiled to yield an extremely efficient custom solver for theproblem familyIn Chapter 2, Beck and Teboulle provide a unified view of gradient-based algorithmsfor possibly nonconvex and non-differentiable problems, with applications to signalrecovery. They start by rederiving the gradient method from several different perspectives and suggest a modification that overcomes the slow convergence of the algorithmThey then apply the developed framework to different image-processing problems suchas e1-based regularization, TV-based denoising, and Tv-based deblurring, as well ascommunication applications like source localizationIn Chapter 3, Songsiri, Dahl, and Vandenberghe consider graphical models for autore-gressive processes. They take a parametric approach for maximum-likelihood andmaximum-entropy estimation of autoregressive models with conditional independenceconstraints, which translates into a sparsity pattern on the inverse of the spectral-densitymatrix. These constraints turn out to be nonconvex. To treat them the authors proposea relaxation which in some cases is an exact reformulation of the original problem. Theproposed methodology allows the selection of graphical models by fitting autoregressiveprocesses to different topologies and is illustrated in different applicationsThe following three chapters deal with optimization problems closely related to SDPand relaxation techniquesIn Chapter 4, Luo and Chang consider the SDP relaxation for several classes ofquadratic-optimization problems such as separable quadratically constrained quadraticprograms(QCQPs)and fractional QCQPs, with applications in communications and signal processing. They identify cases for which the relaxation is tight as well as classes ofquadratic-optimization problems whose relaxation provides a guaranteed, finite worstcase approximation performance. Numerical simulations are carried out to assess theefficacy of the SDP-relaxation approach
    2020-12-10下载
    积分:1
  • 匈牙利算法的函数优化matlab
    匈牙利算法的基本思想是修改效益矩阵的行或列,使得每一行或列中至少有一个为零的元素,经过修正后,直至在不同行、不同列中至少有一个零元素,从而得到与这些零元素相对应的一个完全分配方案。当它用于效益矩阵时,这个完全分配方案就是一个最优分配,它使总的效益为最小。这种方法总是在有限步内收敛于一个最优解
    2020-12-10下载
    积分:1
  • 四叉树码的原理
    文档主要描述四叉树的思想的原理,能清除的给读者知道四叉树的来龙去脉,因此,不懂此原理的朋友可下载。
    2020-12-04下载
    积分:1
  • STM32F103使用硬件IIC操作OLED屏幕
    STM32F103使用硬件IIC操作OLED屏幕,适用于各类OLED屏幕
    2021-05-06下载
    积分:1
  • 复杂网络 常用数据集.zip
    【实例简介】常用的复杂网络的数据集,包括karate,dolphins,football等 此外部分数据集还提供了相应的论文 针对数据集进行了无向图和有向图以及加权无权的分类,方便使用
    2021-12-01 00:48:19下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载