2012年全国大学生数学建模竞赛A题一等奖论文
2012年全国大学生数学建模竞赛A题一等奖论文。高教社杯全国大学生数学建模竞赛编号专用页赛区评侧编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于数理分析的葡萄及葡萄酒评价体系摘要葡萄酒的质量评价是硏究葪萄酒的一个重要领域,目前葡萄酒的质量主要由评酒师感官评定。但感官评定存在人为因素,业界一自在尝试用葡萄的理化指标或者葡萄洏的理化指标定量评价葡萄洒的质量。本题要求我们根据葡萄以及葡萄酒的相关数据建模,并研究基」理化指标的葡萄酒评价体系的建立对于问题一,我们首先用配对样品t检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS软件对两组ⅳ酒员的评分的各个指标以及总评分进行了配对样本t检验。得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异白葡萄、红葡萄以及整休的评价存在显著性差异接着我们建立了数掂可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。得到第2组的方差明显小于第1组的从而得出了第2组评价数据的可信度更高的结论。对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。方面,我们对酿酒葡萄的级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27种葡萄理化指标的综合得分及其排序(见正文表5)。另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27种葡萄酒质量的综合得分并排序(见正文表6)。最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5级(见正文表8)。对于问一,首先我们将众多的葡萄理化指标用主成分分析法综合成6个主因子,并将葡萄等级也列为主因子之一。对葡萄的6个主因子,以及葡萄酒的10个指标用SPSS软件进行偏相关分析,得到酒黃酮与葡萄的等级正相关性较强等结论。之后对相关性较强的主因子和指标作多元线性回归。得到了葡萄酒10个单指标与主因了之间的多元回归方程,该回归方程定量表示两者之间的联系对于问题四,我们首先将葡萄酒的理化指标标准化处理,对葡萄酒的质量与荀萄的6个主因子和葡萄酒的10个单指标作偏相关分析,并求出多元线性回归方程。该方程就表示了葡萄和葡萄酒理化指标对葡萄酒质量的影响。之后,我们通过通径分析方法中的逐步回归分析得到葡萄与葡萄酒的理化指标只确定了葡萄酒质量信息的47%。从而得出了不能用葡萄和葡萄酒的理化指标评价葡萄酒的质量的结论。接着我们还采用通径分析屮的间接通径系数分析求出各自变量之间通过传递作用对应变量的影响,得到单宁与总酚传递性影响较强等结论最后,我们对模型的改进方向以及优缺点进行了讨论。关键词:配对样本t检验数据可信度评价主成分分析模糊数学评价综合评分信息熵偏相关分析多元线性回归1问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒荀萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件中给岀∫某年份一些葡萄酒的评价结果,并分別给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。我们需要建立数学模型并且讨论下列问题:1.分析附件1中两组评洒员的评价结果有无显著性差异,并确定哪一组的评价结果更可信。2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。3.分析酿酒葡萄与葡萄酒的理化指标之间的联系。4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用荀萄和葡萄酒的理化指标来评价葡萄酒的质量2模型的假设与符号的约定2.1模型的假设与说明(1)评酒员的打分是按照加分制(不采用扣分制);(2)假设20名评酒员的评价八度在同一区间(数据合理,不需要标准化)(3)每位评酒员的系统误差较小,在本问题屮可以忽略不计(4)假设附件中给出的葡萄和荀萄酒理化指标都准确可靠。2.2符号的约定与说明符号符号的意义原假设显著性概率第1组评酒员对第号品种葡萄酒评分的平均值,第2组评洒员对第号品种葡萄酒评分的平均值第一组评酒员对指标评分的偏差的方差,第二组评酒员对指标评分的偏差的方差,=…,第1组10位评酒员对号酒样品第项指标评分的平均分第组第号评酒员对号酒样品第项指标评分与平均值的偏第1组第号评酒员对其项指标评分与平均值的偏差的平均第2组第个评酒员的总体指标偏差的方差重新确立的第项指标的权重第2组10个评酒员的总体指标偏差的方差评酒员指标的平均评分,=葡萄的第项指标,葡萄的第项因子,=葡萄酒的第项理化指标3问题一的分析与求解3.1问题一的分析题冂要求我们根据两组评酒员对27种红葡萄洒和28种白葡萄泙的10个指标相应的打分情况进行分析,并确定两组评酒员对葡萄酒的评价结果是否有显著性差异,然后判断哪组评酒员的评价结果更可信初步分析可知:由于评酒员对颜色、气味等感官指标的衡量人度不同,因此两组评酒员评价结果是否具有显著性差异应该与评价指标的类型有关,不同的评价指标的显著性差异可能会不同。同时,由于红葡萄酒和白葡萄酒的外观、口味竽指标羔异性较大,处理时需要将白葡萄酒和红葡萄酒的评价结果的显著性差昦分开讨论。基于以上分析,我们可以分别两组品尝同一种类酒样品的评酒员的评价结果进行两两配对,分析配对的数据是否满烂配对样品t检验的前提条件,而且根据常识可知评酒员对同一种酒的同一指标的评价在实际中是符合t检验的条件的。接着我们就可以对数据进行多组配对样品的t检验,从而对两组评洒员评价结果的显著性差异进行检验。由于对同一酒样品的评价数据只有两组,我们只能通过评价结果的稳定性来判定结果的可靠性。而每组结果的可靠性乂最终决定于每个评酒员的稳定性,因此将问题转化为对评酒员稳定性的评价。3.2配对样品的t检验简介统计知识指出:配对样本是指对冋一样本进行两次测试所获得的两组数据,或对两个完全相同的样本在不同条件下进行测试所得的两组数据。在本问中我们可以把配对样品理解为有27组两个完全相同的酒样品在两组不同评酒员的检测下得到的两组数据,两组屮各个指标的数据为每组评酒员对该指标打分的平均值配对样品的t检验可检测配对双方的结果是否具有显著性差异,因此就可以检验出配对的双方(第一组与第二组)对葡萄酒的评价结果是否冇差异性型对样品t检验具有的前提条件为:(1)两样品必须配对(2)两样品来源的总体应该满足正态性分布。配对样品t检验基本原理是:求出每对的差值如果两种处理实际上没有差异,则差值的总体均数应当为0,从该总体中抽出的样本其均数也应当在0附近波动;反之,如果两种处理有差异,差值的总体均数就应当远离0,其样本均数也应当远离0。这样,通过检验该差值总体均数是否为0,就可以得知两种处理有无差异。该检验相应的假设为:=,两种处理没有差別,4≠两和处理存在差别3.3葡萄酒配对样品的t检验问题一中配对样品为27组两个完全相同的酒样品在两组不同评酒员的检测下得到的两组数据,其中两组中各个指标的数据为各组10个评酒员对该指标打分的平均值。该问题中的10个指标分别为:外观澄清度、外观色调、香气纯正度、香气浓度、香气质量、口感纯正度、口感浓度、口感持久性、口感质量、平衡/总休评价。根据t检验的原理,对荀萄酒配对样品进行t检验之前我们要对样品进行正态性检验。首先我们根据附件一并处理表格中的数据,得到配对样品的两组数据,绘制红葡萄酒配对样品表格部分数据如表1表1红葡萄酒配对样品数据表澄清度澄清度平衡/整平衡/整(1组均值)(2组均值)体评价(1组体评价(2组均值)均值)2.3.18.4红29.6红263.63.78.8红273.73.78.8白葡萄酒配对样品表格部分数据如表2:表2白葡萄酒配对样品数据表澄清度澄清度平衡/整平衡/整(1组均值)(2组均值)体评价(1组体评价(2组均值)均值)白17.78.4白22.93.19.1日26白273.778.8从上表中我们能看出,将白葡萄酒和红葡萄酒中的每个指标分别进行样品的配对后,每一个指标的配对结果有27对,每一对的双方分别是1组和2组的评酒员对该指标的评分的平均值。3.3.1样本总体的K-S正态性检验配对样品的t检验要求两对应样品的总体满足正态分布,则总体中的样品应该满足正态性或者近似正态性,样本的正态性检验如卜以红葡萄酒的澄清度的27组数据为例分析:利用SPSS软作绘制两样品的直方图和趋势图如图1所示:图1红葡萄酒澄清度两组数据自方图我们假设两组总体数据都服从态分布,利用SPSS软件进行KS忙态性检验的具体结果见附录2.3。两组数据的近似相伴概率值P分别为0.239和0.329,大于我们一般的显著水平0.05则接受原来假设,即两组红葡萄酒的澄清度数据符合近似正态分布同理可用SPSS软件对其他指标的正态性进行检验,得到结果符合实际猜想,都服从近似正态分布。3.3.2葡萄酒配对样品t检验步骤两种葡萄酒的处理过程类似,这里我们以对红葡萄酒谜价结果的差异的显著性分析为例。step1:我们以第一组对葡萄酒的评价结果总体服从正态分布〃σ,以第二组对葡萄酒的评价结果总体服从正态分布μσ。我们已分别从两总体中获得了抽样样本和,并分别进行两样品相互配对。(具体数据见附录2.1)Step2:;引进一个新的随机变量,对应的样本为将配对样本的t检验转化为单样本t检验Step3:建立零假设4=,构造t统计量;Step4:利用SPSS进行配对样品t检验分析,并对结果做出推断3.4显著性差异结果分析3.3.1红葡萄酒各指标差异显著性分析由SPSS软件对红葡萄酒各指标的配对样品讠枍验后,得到各指标的显著性概率分布表。(结果如表3所示)表3红葡萄酒酒各指标显著性概率P指标外观澄清度外观色调香气纯正度香气浓度‖香气质量P0.6140.0020.1510.1000.010指标口感纯正度口感浓度口感持久性口感质量平衡/整体P0.4370.1580.2510.0550.674由统计学知识,如果显著性概率P显著水平α,则不能拒绝零假设,即认为两总体样本的均值不存在显著差异。则根据表3可得:两组评酒员对红葡萄酒各项指标的评价中除外观色调、香气质量存在显著性差异以外,其他8项指标都无显著性差异。3.3.2白葡萄酒各指标差异显著性分析代入白葡萄酒的评价数据,重复以上步骤,得到白荀萄酒各指标的显著性概率分布表。(结果如表4所示)表4白葡萄酒各指标显著性概率P分布表指标外观澄清度外观色调香气纯正度香气浓度香气质量P0,2990.0890.930.2380.714指标口感纯正度口感浓度口感持久性口感质量平衡/整体0,0000.0050.8630.0000.00l分析表4可得:两组评酒员对白葡萄酒各项指标的评价中只有凵感纯正度」感浓度、凵感质量、平衡/整体评价存在显著性差异,其他6项指标都无显著性差异3.3.3葡萄酒总体差异显著性分析(1)红葡萄酒总体差异显著性分析该问题的附件中已经给出了10项指标的杈重,因此将10项指标利用加权合并成总体评价。对于红葡萄酒两组评价结果构造两组配对t检验。得到显著性概率P=0.030
- 2020-12-04下载
- 积分:1
信号稀疏表示理论及其应用
信号稀疏表示理论及其应用信号稀疏表示理论及其应用郭金库刘光斌余志勇吴瑾颖著斜学出版社北京内容简介信号稀疏表示是一种新兴的信号分析和综合的方法,吸引了研究者的大量关注,同时被应用到信号处理的许多方面,如非平稳信号分析,信号编码、识别与信号去噪,压缩感知,盲源分离等。信号稀疏表示方向的研究热点主要集中在稀硫分解算法、过完备原子字典和稀硫表示的应用等方面。本书在介绍国内外该研究方向研究进展的基础上,重点介绍了作者在稀疏分解快速算法、色散原子字典,稀疏表示在线性调频信号参数估计以及电磁兼容测试信号处理等方面的研究成果。本书可供从事信号与信息处理信号表示、非平稳信号分析等方面工作的科研工作人员和研究生学习、研究使用图书在版编目CIP)数据信号稀疏表示理论及其应用/郭金库等著,一北京:科学出版社2013IsBN978-7-03-038209-2Ⅰ.信…Ⅱ郭…Ⅲ.信号处理Ⅳ.TN91.7中国版本图书馆CP数据核字(2013)第171727号责任編辑:魏英杰杨向萍/责任校对:桂伟利责任印制:张倩/封面设计:陈敬荦幽社出版北京东黄城根北街16号邮政编码:10717http://www.sciencep,com此象通州皇家印刺厂印刷科学出版社发行各地新华书店经销2013年7月第一版开本:720×1000B52013年7月第一次印刷印张:91/4字数:176000定价:50.00元(如有印装质量问题,我社负责调换(科印〉)前言信号稀疏表示是过去近20年来信号处理界一个非常引人关注的硏究领域,众多硏究论文和专题研讨会表明了该领域的蓬勃发展。信号稀疏表示的目的就是在给定的过完备字典中用尽可能少的原子来表示信号,可以获得信号更为简洁的表示方式,从而使我们更容易地获取信号中所蕴含的信息,更方便进一步对信号进行加工处理,如压缩、编码等。信号稀疏表示方向的研究热点主要集中在稀疏分解算法、过完备原子字典和稀疏表示的应用等方面。本书在介绍国内外该方向研究进展的基础上,重点介绍作者在稀疏分解快速算法、色散原子字典及稀疏表示在线性调频信号参数估计等方面的研究成果。全书共分为6章。第1章为绪论,在回顾传统的非平稳信号分析方法的基础上引出信号稀疏表示的基本思想,并介绍稀疏表示理论的发展历程和研究现状。第2章首先给岀稀疏逼近和稀疏表示的定义,然后简要介绍常用的稀疏分解算法和时频原子字典,最后介绍一种利用稀疏表示结果构造的时频分布。第3章利用 Gabor原子特点,构造一种随信号或分解残留信号自适应变化的 Gabor子字典,提出基于自适应 Gabor子字典的匹配追踪算法并证明了算法的收敛性。进一步,基于离散自适应 Gabor子字典提出相应的匹配追踪快速算法并分析了计算复杂度。最后利用数值实验结果验证了提出的方法与传统的匹配追踪算法具有相同的计算精度。第4章为了描述色散信号,利用色散关系或者近似色散关系设计出能够描述色散特性的原子,并构造色散原子字典。针对类似色散原子这种瞬时频率随时间非线性变化的时频原子,给出一种非负、无交叉项的能量时频分布。第5章研究信号稀疏表示在线性调频信号的参数估计及线性时不变系统辨识中的应用。第6章探讨信号稀疏表示在电磁兼容现场测试信号处理方面的应用。本书的很多研究成果是在清华大学自动化系邹红星教授的指导和信号稀疏表示理论及其应用帮助下完成的,这为本书的写作打下了坚实的基础。同时,第二炮兵工程大学的领导也一直关心和支持作者的课题研究,尤其是本书的出版得到了第二炮兵工程大学控制工程系的直接支持和帮助。在本书出版之际谨向他们表示衷心的感谢!另外,借此杋会特别感谢第二炮兵工程大学控制工程系以及清华大学自动化系的周志杰、苏娟、郜震宵、杨晓君、王榕、马竞伟、俞力杰、刘冰、汪洪桥、胡来红、孙振生、席建祥等老师和同学的帮助。本书的出版得到了国家自然科学基金项目(61201120)、中国博士后科学基金(2012M521904)和第二炮兵工程大学创新性探索项目的资助。作者2年6月目录前言第1章绪论1.1非平稳信号分析方法·1.2基于基分解的线性时频表示1.2.1傅里叶变换1.2.2短时傅里叶变换………1124561.2.3小波变换1.2.4基分解的不足·1.3经典的时频分布101.3.1 Wigner- ville分布……101.3.2 Cohen类时频分布……1.4稀疏表示方法121.4.1稀疏的就是更优的121.4.2稀疏表示理论的发展141.4.3稀疏表示的应用………………………191.5本书的结构安排……21第2章信号的稀疏表示…222.1稀疏逼近与稀疏表示222.2常用的稀疏分解算法242.2.1框架算法………252.2.2匹配追踪算法262.2.3基追踪算法262.2.4稀疏分解算法的信号精确重构条件∵272.3时频原子字典…………………282.3.1 Gabor原子字典…282.3.2 Chirplet字典………………………29信号稀疏表示理论及其应用2.3.3 FMm let字典………292.3.4 Dopplerlet字典302.4稀疏表示与时频分布…302.5本章小结…34第3章自适应 Gabor子字典的匹配追踪算法363.Ⅰ稀疏分解与匹配追踪算法363.1.1基本的匹配追踪算法………………363.1.2正交匹配追踪算法……383.1.3匹配追踪算法的计算和存储瓶颈……403.2自适应 Gabor子字典…………443.3自适应子字典的匹配追踪算法收敛性493.4离散自适应子字典的匹配追踪快速算法3.5算法验证与实验…603.6应用GPU实现的匹配追踪算法…633.7本章小结··67第4章基于色散原子字典的信号稀疏表示…684.1稀疏表示与原子字典…694.2色散原子字典……………724.2.1稳态相位法4.2.2初始波形及色散原子734.2.3色散原子字典的构造754.2.4基于色散原子字典的稀疏表示…………764.3非负的无交叉项时频分布…804.3.1时频半仿射平面…804.3.2色散原子的非负、无交叉项的时频分布…834.4应用854.5本章小结…88第5章稀疏表示在线性调频信号参数估计及线性时不变系统辨识中的应用895.1基于稀疏信息的线性调频信号参数估计…895.1.1线性调频信号的参数估计89目录5.1.2线性调频率估计·955.1.3初始频率与结束频率估计985.1.4实验结果1005.1.5讨论1055.2稀疏分解在系统辨识中的应用…1065.2.1基于互功率谱的线性时不变系统辨识………1065.2.2匹配追踪算法的降噪原理1085.2.3利用稀疏分解进行线性时不变系统辨识1095.3本章小结…112第6章基于稀疏表示的电磁兼容测试信号处理技术………1136.1现阶段电磁兼容现场测试信号处理面临的难题…………1136.2国内外研究现状…1146.3稀疏表示在电磁兼容测试信号处理中的优势以及待解决的问题117参考文献119附录:自适应子字典的匹配追踪算法参考程序……133第1章绪论1.1非平稳信号分析方法信号的傅里叶变换和反变换实现了信号在时域和频域內的相互转换。傅里叶变换将信号分解为不同频率分量的线性组合,其结果可以告诉我们信号是由多少个正弦波叠加而成,以及相对的幅度。由于不能给出关于这些频率分量何时出现与何时消亡的时变信息,因此傅里叶变换比较适用于分析频率成分不随时间变化的平稳信号。但是,人们发现众多的实际信号却具有明显的非平稳特征。信号的平稳性或非平稳性主要是根据信号的统计量特征来衡量。常用的统计量包括均值(一阶统计量)、相关函数与功率谱密度(二阶统计量),以及高阶矩与高阶谱等(高阶统计量)。若信号的联合分布函数相对于时间是不变的,即信号的各阶统计量与时间无关,则称信号是平稳信号。若信号某阶统计量随时间变化,则称信号为非平稳信号或者时变信号,2。现实世界中存在着各种频率随时间变化的信号,如人类的声音、动物的叫声雷达和声呐信号、生物医学信号等。这些信号都是典型的非平稳信号,它们共同的特点都是持续时间有限,并且自相关函数或功率谱密度是随时间变化的。当研究和处理非平稳信号时,传统的傅里叶变换不能提供对信号频谱时变特征的有效分析和处理,也就是说,频谱和功率谱并不能清楚地描述信号的某个频率分量出现的具体时间及变化趋势。非平稳信号分析与处理是现代信号处理的一个重要研究内容和发展方向,在通信、雷达、信息对抗、自动控制、模式识别、水声、地震勘测和生物医学工程等领域有着广泛应用24。非平稳信号分析方法可以分为线性时频表示、非线性时频分布和信号的稀疏表示(图1-1)。假设信号为几个分量信号的线性组合,如果信号的时频表示也可以表示为这几个分量时频表示的相同线性组合,则这种时频表示称为线性时频表示;否则,称为非线性时频表示,2。传统意义上的线性时频表示通
- 2021-05-06下载
- 积分:1