登录
首页 » Others » win32平台的opencv3.3.0

win32平台的opencv3.3.0

于 2020-12-11 发布
0 101
下载积分: 1 下载次数: 1

代码说明:

2017年8月3日发行的opencv3.3.0官方库是64位平台的,库文件是一个合并的opencv_world模块。这是经过VS2015从源码编译产生win32(x86)平台的动态库文件,是分立的多个模块动态库。经简单测试可用。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 模型参考自适应控制
    详细地介绍了自适应控制算法的实现方法,包含有程序的实现代码,对自适应控制的学习有很好的启发作用。
    2020-11-27下载
    积分:1
  • Nandflash工厂烧录文件制作步骤
    文档介绍了如何使用海思自带工具制作分区镜像,并生成烧录文件的步骤。对于初学者来说十分有用
    2020-12-07下载
    积分:1
  • matlab色散
    matlab色散补偿程序,光谱仪采集到的数据进行一系列变换,画出耦合曲线的图
    2020-12-01下载
    积分:1
  • matlab的图像边缘的提取和函数实现
    数学建模挑战赛的代码,边缘提取,然后使用函数拟合
    2020-12-07下载
    积分:1
  • CCS3.3中的graph详细使用说明
    【实例简介】CCS3.3中的graph详细使用说明,可以看波形呀,很好用的
    2021-11-21 00:59:25下载
    积分:1
  • 基于java web的医院在线挂号系统
    医院挂号系统主要用于实现医院的挂号,前台基本功能包括:用户注册、用户登录、医院查询、挂号、取消挂号、修改个人信息、退出等。后台基本功能包括:系统管理员登录、医院管理、科室管理、公告管理、退出系统等。
    2020-12-05下载
    积分:1
  • UML工资管理系统(UML课设计)
    这个文档做的主要是工资管理系统,是我们老师要求我们用UML做的,期望对你的课程设计有帮助
    2020-11-30下载
    积分:1
  • SWMM51014代码译及扩展案例
    【实例简介】SWMM5.1.014版代码基础上进行一定扩展,可以用来进行swmm模拟以及out、inp文件的内容读取的教学案例
    2021-11-14 00:33:53下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 自适应迭代最小二乘支持向量机回归算法
    自适应迭代最小二乘支持向量机回归算法,对写高水平的论文有非常好的帮助
    2020-11-02下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载