登录
首页 » MATLAB » 基于蚁群算法的机器人最短路径规划.pdf

基于蚁群算法的机器人最短路径规划.pdf

于 2020-12-11 发布
0 318
下载积分: 1 下载次数: 15

代码说明:

摘要:针对机器人路径规划中,传统蚁群算法收敛速度慢、易陷入局部最优解等问题,提出了一种移动机器人路径规划的改进蚁群优化(ACO)算法。用栅格法建立环境模型,并基于人工势场建立启发信息素矩阵,降低了蚂蚁在初始阶段搜索的盲目性;引入激励函数,降低搜索过程中的死锁现象;改进信息素的更新机制,增强了优秀蚂蚁对全局路径规划的影响。仿真结果表明:改进后蚁群算法的机器人路径规划算法加快了收敛速度,具有较强的鲁棒性和全局寻优能力。关键词:蚁群优化(ACO)算法;人工势场;路径规划;机器人

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 船舶模型仿真(matlab代码)
    船舶模型仿真(matlab代码)
    2021-05-06下载
    积分:1
  • Hilditch二值化算法.m
    【实例简介】经典Hilditch二值化算法
    2021-05-21 16:11:03下载
    积分:1
  • 粒子蚁群算法求解旅行商问题
    【实例简介】通过粒子群算法求解蚁群算法的参数值,并采用该混合算法求解TSP
    2021-06-26 00:31:07下载
    积分:1
  • SVM土壤多分类预测
    【实例简介】包含论文,代码,示例,采集的土壤数据集
    2021-06-24 00:31:18下载
    积分:1
  • 《MATLAB R2016a神经网络设计与应用28个案例分析》随书代码
    目录 第1章线性神经网络的工程应用 1.1系统辨识的MATLAB实现 1.2自适应系统辨识的MATLAB实现 1.3线性系统预测的MATLAB实现 1.4线性神经网络用于消噪处理的MATLAB实现 第2章神经网络预测的实例分析 2.1地震预报的MATLAB实现 2.1.1概述 2.1.2地震预报的MATLAB实例分析 2.2交通运输能力预测的MATLAB实现 2.2.1概述 2.2.2交通运输能力预测的MATLAB实例分析 2.3农作物虫情预测的MATLAB实现 2.3.1概述 2.3.2农作物虫情预测的MATLAB实例分析 2.4基于概率神经网络的故障诊断 2.4.1概述 2.4.2基于PNN的故障诊断实例分析 2.5基 于BP网络和Elman网络的齿轮箱故障诊断 2.5.1概述 2.5.2基于BP网络的齿轮箱故障诊断实例分析 2.5.3基于Elman网络的齿轮箱故障诊断实例分析 2.6基于RBF网络的船用柴油机故障诊断 2.6.1概述 2.6.2基于RBF网络的船用柴油机故障诊断实例分析 第3章BP网络算法分析与工程应用 3.1数值优化的BP网络训练算法 3.1.1拟牛顿法 3.1.2共轭梯度法 3.1.3LevenbergMarquardt法 3.2BP网络的工程应用 3.2.1BP网络在分类中的应用 3.2.2函数逼近 3.2.3BP网络用于胆固醇含量的估计 3.2.4模式识别 第4章神经网络算法分析与实现 4.1Elman神经网络 4.1.1Elman神经网络结构 4.1.2Elman神经网络的训练 4.1.3Elman神经网络的MATLAB实现 4.2Boltzmann机网络 4.2.1BM网络结构 4.2.2BM网络的规则 4.2.3用BM网络解TSP 4.2.4BM网络的MATLAB实现 4.3BSB模型 4.3.1BSB神经模型概述 4.3.2BSB的MATLAB实现 第5章预测控制算法分析与实现 5.1系统辨识 5.2自校正控制 5.2.1单步输出预测 5.2.2最小方差控制 5.2.3最小方差间接自校正控制 5.2.4最小方差直接自校正控制 5.3自适应控制 5.3.1MIT自适应律 5.3.2MIT归一化算法 第6章改进的广义预测控制算法分析与实现 6.1预测控制 6.1.1基于CARIMA模型的JGPC 6.1.2基于CARMA模型的JGPC 6.2神经网络预测控制的MATLAB实现 第7章SOFM网络算法分析与应用 7.1SOFM网络的生物学基础 7.2SOFM网络的拓扑结构 7.3SOFM网络学习算法 7.4SOFM网络的训练过程 7.5SOFM网络的MATLAB实现 7.6SOFM网络在实际工程中的应用 7.6.1SOFM网络在人口分类中的应用 7.6.2SOFM网络在土壤分类中的应用 第8章几种网络算法分析与应用 8.1竞争型神经网络的概念与原理 8.1.1竞争型神经网络的概念 8.1.2竞争型神经网络的原理 8.2几种联想学习规则 8.2.1内星学习规则 8.2.2外星学习规则 8.2.3科荷伦学习规则 第9章Hopfield神经网络算法分析与实现 9.1离散Hopfield神经网络 9.1.1网络的结构与工作方式 9.1.2吸引子与能量函数 9.1.3网络的权值设计 9.2连续Hopfield神经网络 9.3联想记忆 9.3.1联想记忆网络 9.3.2联想记忆网络的改进 9.4Hopfield神经网络的MATLAB实现 第10章学习向量量化与对向传播网络算法分析与实现 10.1学习向量量化网络 10.1.1LVQ网络模型 10.1.2LVQ网络学习算法 10.1.3LVQ网络学习的MATLAB实现 10.2对向传播网络 10.2.1对向传播网络概述 10.2.2CPN网络学习及规则 10.2.3对向传播网络的实际应用 第11章NARMAL2控制算法分析与实现 11.1反馈线性化控制系统原理 11.2反馈线性控制的MATLAB实现 11.3NARMAL2控制器原理及实例分析 11.3.1NARMAL2控制器原理 11.3.2NARMAL2控制器实例分析 第12章神经网络函数及其导函数 12.1神经网络的学习函数 12.2神经网络的输入函数及其导函数 12.3神经网络的性能函数及其导函数 12.3.1性能函数 12.3.2性能函数的导函数 第13章Simulink神经网络设计 13.1Simulink交互式仿真集成环境 13.1.1Simulink模型创建 13.1.2Simulink建模操作 13.1.3Simulink参数设置 13.1.4简单的Simulink例子 13.2Simulink神经网络模块 13.2.1传递函数模块库 13.2.2网络输入模块库 13.2.3权值设置模块库 13.2.4处理模块库 13.2.5控制系统模块库 13.3Simulink神经网络设计 13.3.1模型构建 13.3.2模型仿真 13.3.3修改信号源 第14章BP神经元模型与应用案例 14.1BP神经元及其模型 14.2BP网络的学习 14.2.1BP网络学习算法 14.2.2BP网络学习算法的比较 14.3BP网络的局限性 14.4BP网络的MATLAB程序应用举例 14.4.1BP网络设计的基本方法 14.4.2BP网络应用举例 第15章自适应共振网络算法分析与应用 15.1ART1网络 15.1.1网络系统结构 15.1.2ATR1网络运行过程 15.1.3ATR1学习算法 15.1.4ART1网络应用 15.2ART2网络 15.2.1网络结构与运行原理 15.2.2网络的数学模型与学习算法 15.2.3ART2网络在系统辨识中的应用 第16章径向基网络算法分析与应用 16.1正则化理论及正则化RBF网络 16.1.1正则化理论 16.1.2正则化RBF网络 16.2径向基神经网络结构 16.2.1径向基神经元模型 16.2.2径向基神经网络模型 16.3径向基神经网络学习 16.4径向基神经网络的工程应用 16.4.1函数逼近 16.4.2散布常数对径向基网络的影响 16.5广义回归神经网络 16.5.1GRNN网络结构 16.5.2GRNN网络工作原理 16.6概率神经网络 16.6.1PNN网络结构 16.6.2PNN网络工作原理 16.6.3应用PNN进行变量分类 第17章感知器算法分析与实现 17.1单层感知器模型 17.2单层感知器的学习算法 17.3感知器的局限性 17.4单层感知器神经网络的MATLAB仿真 17.4.1感知器神经网络设计的基本方法 17.4.2单层感知器神经网络的应用举例 17.5多层感知器神经网络及其MATLAB仿真 17.5.1多层感知器神经网络的设计方法 17.5.2多层感知器神经网络的应用举例 17.6用于线性分类问题的进一步讨论 17.6.1决策函数与决策边界 17.6.2感知器的决策函数与决策边界 第18章线性网络与BP网络工具箱函数及其应用 18.1线性神经网络工具箱函数 18.1.1创建函数及其应用 18.1.2学习函数及其应用 18.1.3性能函数及其应用 18.1.4权积函数及其应用 18.1.5初始化函数 18.2BP神经网络工具箱函数 18.2.1创建函数及其应用 18.2.2传递函数及其应用 18.2.3学习函数及其应用 18.2.4性能函数及其应用 18.2.5训练函数及其应用 18.2.6显示函数及其应用 第19章BP网络算法分析与实现 19.1BP神经网络模型 19.2BP神经网络算法 19.2.1SDBP算法 19.2.2MOBP算法 19.2.3VLBP算法 19.2.4RPROP算法 19.2.5CGBP算法 19.3BP网络设计 19.4BP神经网络局限性 19.5BP神经网络算法改进 19.5.1附加动量法 19.5.2有自适应lr的梯度下降法 19.5.3弹性梯度下降法 第20章自组织网络工具箱函数及其应用 20.1创建函数 20.2传递函数 20.3距离函数 20.4学习函数 20.5初始化函数 20.6训练函数 20.7显示函数 20.8权值函数 20.9结构函数 第21章线性网络算法分析与实现 21.1线性神经网络结构 21.2线性神经网络学习 21.3线性神经网络训练 21.4线性神经网络的MATLAB实现 21.5线性神经网络的局限性 21.5.1超定系统 21.5.2不定系统 21.5.3线性相关向量 21.5.4学习速率过大 第22章神经网络工具箱函数及其应用 22.1径向基神经网络工具箱函数 22.1.1创建函数 22.1.2变换函数 22.1.3传递函数 22.1.4距离函数 22.2Hopfield神经网络工具箱函数 22.2.1传输函数 22.2.2学习函数 22.3Elman神经网络工具箱函数 22.4学习向量量化网络工具箱函数 22.4.1创建函数 22.4.2显示函数 第23章感知器网络算法分析与实现 23.1单层感知器 23.1.1单层感知器模型 23.1.2感知器功能 23.1.3网络结构 23.1.4感知器算法 23.1.5网络的训练 23.1.6单层感知器实现 23.1.7感知器局限性 23.2多层感知器 23.2.1多层感知器介绍 23.2.2多层感知器实现 23.3感知器神经网络的MATLAB实现 第24章神经网络工具箱函数分析与应用 24.1权值和阈值初始化函数 24.2训练和自适应调整函数 第25章自组织竞争网络算法分析与应用 25.1自组织竞争网络结构 25.2自组织竞争网络学习规则 25.2.1Kohonen权值学习规则 25.2.2阈值学习规则 25.3网络训练 25.4竞争型网络存在的问题 25.5竞争型网络的工程应用 第26章小波神经网络在交通流量预测中的应用 26.1小波变换概述 26.2小波神经网络的定义 26.3小波神经网络的理论 26.4小波神经网络的结构 26.5小波神经网络用于交通流量预测 第27章模糊神经网络算法分析与应用 27.1模糊神经网络 27.2几种常用模型的模糊神经网络 27.2.1Mamdani模型模糊神经网络 27.2.2TakagiSugeno模型模糊神经网络 27.2.3模糊神经网络的函数 27.2.4模糊神经网络的应用 27.2.5神经模糊系统的图形界面 第28章感知器网络工具箱函数及其应用 28.1创建函数 28.2初始化函数 28.3显示函数 28.4仿真函数 28.5性能函数 28.6训练函数 28.7学习函数 28.8传递函数
    2019-07-06下载
    积分:1
  • 颜色自动生成器
    【实例简介】 lineStyles = linspecer(N)
    2021-07-16 00:32:03下载
    积分:1
  • 数学建模十类算法.pdf
    【实例简介】 数学建模竞赛中应当掌握的十类算法 董乘宇∗ (北京邮电大学,北京 100876) 1 十类常用算法 数学建模竞赛中应当掌握的十类算法: 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过 模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据 的关键就在于这些算法,通常使用 MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很 多时候这些问题可以用数学规划算法来描述,通常使用 Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以 用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法, 竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一 些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本 身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的 数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组 求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明 问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用 MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是 97 年的 A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的 组合方案将要面对着的是一个极其复杂的公式和 108 种容差选取方案,根本不可能去求解析解,那如何 去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正 ∗作者简介:董乘宇,曾任 SHUMO.COM 论坛“编程交流”版版主,获 2002 年全国大学生数学建模竞赛一等奖。 第 1 期 董乘宇:数学建模竞赛中应当掌握的十类算法 13 态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方 案,从中选取一个最佳的。另一个例子就是去年†的彩票第二问,要求设计一种更好的方案,首先方案的 优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是 98 年美国 赛 A 题,生物组织切片的三维插值处理,94 年 A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸 扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。此类问题在 MATLAB 中有很多现成的函数可以调用,熟悉 MATLAB,这些方法都能游刃有余的用好。 2.3 规划类问题算法 竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几 个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如 98年 B 题,用很多不等式完 全可以把问题刻画清楚,因此列举出规划后用 Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟 悉这两个软件。 2.4 图论问题 98 年 B 题、00 年 B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包 括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。每一个算法都应该实现一遍,否则 到比赛时再写就晚了。 2.5 计算机算法设计中的问题 计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。比如 92 年 B 题用分枝 定界法,97 年 B 题是典型的动态规划问题,此外 98 年 B 题体现了分治算法。这方面问题和 ACM 程序 设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关 的书。 2.6 最优化理论的三大非经典算法 这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。近 几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用 场,比如:97 年 A 题的模拟退火算法,00 年 B 题的神经网络分类算法,象 01 年 B 题这种难题也可以 使用神经网络,还有美国竞赛 89 年 A 题也和 BP 算法有关系,当时是 86 年刚提出 BP 算法,89 年就考 了,说明赛题可能是当今前沿科技的抽象体现。03 年 B 题伽马刀问题也是目前研究的课题,目前算法最 佳的是遗传算法。 2.7 网格算法和穷举算法 网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在 N 个变量情况下的最优化问 题,那么对这些变量可取的空间进行采点,比如在 [a, b] 区间内取 M 1 个点,就是 a, a (b−a)/M, a 2 · (b − a)/M, · · · , b 那么这样循环就需要进行 (M 1)N 次运算,所以计算量很大。 比如 97 年 A 题、99 年 B 题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行, 还有要用高级语言来做,最好不要用 MATLAB 做网格,否则会算很久的。 †编者注:指 2002 年 14 数 模 2004 年 穷举法大家都熟悉,就不说了。 2.8 一些连续数据离散化的方法 大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一个连续的 世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法应用很广,而且和上面的 很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。 2.9 数值分析算法 这类算法是针对高级语言而专门设的,如果你用的是 MATLAB、Mathematica,大可不必准备,因为 象数值分析中有很多函数一般的数学软件是具备的。 2.10 图象处理算法 01 年 A 题中需要你会读 BMP 图象、美国赛 98 年 A 题需要你知道三维插值计算,03 年 B 题要求 更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展
    2021-07-07 00:32:08下载
    积分:1
  • 于TDOA声源定位算法仿真
    基于TDOA声源定位算法仿真,基于TDOA声源定位算法仿真 声源定位算法是利用麦克风阵列进行声音定位,属于宽带信号,传统的MUSIC和DOA算法并不适用该场景,本仿真主要用TDOA算法进行定位。
    2021-05-06下载
    积分:1
  • PWM增长型boost.mdl
    【实例简介】
    2021-07-04 00:31:09下载
    积分:1
  • 多回声核的实现
    【实例简介】
    2021-08-04 00:30:58下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 29今日下载