基于模糊算法的移动机器人路径规划
一种基于模糊算法的移动机器人路径规划策略. 利用超声波传感器对环境进行探测, 得到关于障碍物和目标的信息. 运用模糊推理将障碍位置信息与目标位置信息模糊化,建立模糊规则并解模糊最终使机器人可以很好的避障,从而实现了移动机器人的路径规划。第4期陈卫东:基于模糊算法的移动机器人路径规划按照同样的方法,可以建立起多种条件下的控制规则的合成隶属度结果规则.类似于这样的控制规则可归纳总结为很多条.在模糊控制规则的制定上采用基于控制器行为特性的方NB NSPS PBNBSPS PBA0.7式,将动作分为若干基本行为,复杂的行为可由几个简0.303X)嬷单行为按次序构成,可简化模糊控制规则的确定,并可10-5减少模糊控制规则的数目,避开被控对象的特性建模cmis-10-510 cm/s(a)左轮加速度b)右轮加速度3.4模糊推理图8左右轮合成隶属度函数模糊推理是模糊控制器的核心,它具有模拟人的3.5解模糊基于模糊概念的推理能力,该推理过程是基于模糊逻通过模糊推理得到的结果是一个模糊集合.但在辑中的蕴含关系及推理规则来进行的由模糊规则推实际模糊控制中,必须要有一个确定值才能控制或驱理出输岀量的隶属度根据 Mamdani模糊推理方法求取动执行机构.将模糊推理结果转化为精确值的过程称模糊关系矩阵0为解模糊.所以,解模糊的作用是将模糊集合映射为为了说明模糊推理控制器的工作过程,这里以机个确定的点.也就是把上面推理合成得到的左右轮加器人在FD=105cm;ID=117cm;RD=40cm;θ=45deg;υ速度模糊集合转化为一个精确值来控制机器人的运=3.5cm/s的状态为例来说明推理决策的过程.査询数动解模糊方法的选择与隶属度函数形状的选择、推理据库中的规则,此状态下的模糊规则为表格中的第5、方法的选择相关. MATLAB提供5种解模糊方法:面积6、11和12.由模糊规则的推理与合成(取极小,取极大)重心法、面积等分法、平均最大隶属度法、最大隶属度得到输出的隶属度如下取小法和最大隶属度取大法.本文仿真采用的重心第五个规则推理结果法.这种方法也称为质心法或面积中心法,是所有解模糊化方法中最为合理、最流行和引人关注的方法.该方NB NS 1Z PS PBNB NS 1ZPSPB法的数学表达式是0.3031p1(a)d(a1)10 cm/s2左轮加速度2)ALaI(a)左轮加速度b)右轮加速度图4规则5推理的左右轮合成隶属度函数第六规则推理结果:ar uR(ar)d(a,)右轮加速度=(3)NB NS IZ PS PBNB NSPS PB式中,表示输出模糊子集所有元素的隶属度值在连续0.20.2论域上的代数积分,而加速度的取值是表示其左右两0m/s2-10-5cn边的面积为相等.该方法计算复杂,但它包含了输出模(a)左轮加速度(b)右轮加速度图5规则6推理的左右轮合成隶属度函数糊子集所有元素的信息,也较精确.采用重心法将模糊第十一规则推理结果量转换成清晰量,再经过线性尺度变换为实际输入给直流电机的控制量控制移动机器人的移动NB NS 1Z PS PBNB NS IZ PS PB0.74仿真实验及结果分析为了验证本文提出的模糊控制方法的可行性,在10-5105cm/s210-5cnMatlab中利用 Simulink建立系统仿真模型,对控制规则(a)左轮加速度(b)右轮加速度图6规则11推理的左右轮合成隶属度函数进行了仿真,假设移动机器人的行驶速度为0.6m/s,使第十二规则推理结果:用 Fuzzy logic工具箱软件对模糊算法进行了仿真.在仿n真过程中,起点和终点的位置可以任意设置,障碍物的NB NS IZ PS PBPS大小、形状和位置也可以任意设置,这样就可以在任意环境下检验算法的正确性和可靠性0.20.2图9为当起点为(0,0),目标点为(9,9),在障碍物100cm/s2-10-5cmls存在时模糊算法和势场法的路径规划仿真.由图我们(a)左轮加速度(b)右轮加速度图7规则12推理的左右轮合成隶属度函数可以看出,模糊算法比势场法规划的路径更优.其工作4电子学报011年代价更小,行走的路径也更短由于速度的控制,比文5结论献[12]中只对转向角进行控制节省大量时间移动机器人由于传感器的限制以及周围环境的不移动机器人路径规划仿真确定性,很难预先对机器人的移动路径进行规划.本文目标点釆用了的模糊控制算法对移动机器人进行控制.这种8算法对移动机器人的运行环境几乎没有什么限制,它能在情况很复杂的未知环境里运行.对障碍物的形状及其个数也没有什么约束.并可避开传统算法中存在障碍物的对移动机器人的定位精度敏感,对环境信息依赖性强等缺点.并且通过对速度的控制使机器人比以前只2模糊算法路径dd对转角控制进行路径规划节省时间,具有很强的时效性.从实验中的移动轨迹可以看出,移动机器人的行为0起始点势场法路径表现出很好的一致性、连续性和稳定性参考文献10x/m图9模糊算法和势场法的仿真对比图[1]李磊,叶涛,谭民,等.移动机器人技术研究现状与未来在相同的环境下用A算法和模糊算法也进行了J].机器人,2002,24(5):475-480仿真对比,仿真路径图如图10.应用两种算法获得的最Li Lei, Ye Tao, Tan Ming. Present state and future development优路径如图所示.其中,A*算法计算量较大,并且Aof mobile robot technology research [J. Robot. 2002, 24(5)算法只能在环境信息已知的情况下找到路径而不适合475-480.(in Chinese)部分环境信息已知的情况,而且很不适合动态环境的2 Pradhan, DR Parhi, A K Panda. Potential feld method to路径规划.模糊算法显然比A算法规划的路径更优,navigate several mobile robots[ J. Applied Intelligence, 2006(25):321-333并且能够实现移动机器人的实时避障3]郝宗波,洪炳熔.未知环境下基于传感器的移动机器人路移动机器人路径规划仿真径规划[J].电子学报,2006,34(5):953-956目标点Hao Zong-bo, Hong Bing-rong Sensor-based path planning for8mobile robot in unknown environment[J. Acta ElectronicaSinica, 2006, 34(5): 953-956(in Chinese)64]周兰凤,洪炳熔.用基于知识的遗传算法实现移动机器人障碍物路径规划[J].电子学报,2006,34(5):911-914Zhou Lan-feng; Hong Bing-rong. a knowledge based geneticalgorithm for path planning of a mobile robot[ J. Acta Elec2模糊算法路径tronic Sinica, 2006, 34 (5): 911-914(in Chinese0[5]高庆吉,雷亚莉,胡丹丹,等.基于自适应感知复位算法的起始点A*算法路径移动机器人定位[J.电子学报,2007,35(11):2166-217110Gao Qing-ji, Lei Ya-li, Hu Dan-dan. A robot localizationr/m图10模糊算法和A*算法的仿真对比图method based on adaptive sensor resetting algorithm[ J].Acta对比实验表明,模糊算法不但优于人工势场法,也Electronica Sinica, 2007, 35(11): 2166-2171.(in Chinese)优于A算法模糊算法大大优化移动机器人的路径规6TLLe,C-JWu. Fuzzy motion planning of mobile robots in划,是一种很智能的路径规划方法.模糊算法仿真成功unknown environments[J]. Journal of Intelligent and RoboticSystems,2003,37(2):177-191(下转第980页)证明使用模糊控制进行路径规划时对移动机器人的运行环境几乎没有什么限制,它能在未知环境里运行.对作者简介障碍物的形状及其个数也没有什么约東.从仿真实验陈卫东男,1972年生于吉林长春,教授,主要研究方向为机器中的移动轨迹可以看出,移动机器人的行为表现出比人控制,智能算法及其应用,图像处理等较好的一致性、连续性和稳定性.采用模糊控制算法避E-mail:wdchen@ysu.edu.cn开了传统算法中存在的对移动机器人的定位精度敏朱奇光男,1978年生于浙江宁波,讲师,博士研究生,主要研究感、对环境的信息依赖性强等缺点方向为机器人控制,智能算法及其应用第4期陈卫东:基于模糊算法的移动机器人路径规划
- 2021-05-06下载
- 积分:1
仿真软件saber说明书 很详细
介绍saber仿真的很好的书籍 建议按步骤学习SABER电气系统培训手册Saber ElectricalSystems Workshop练习指南北京才略科技有限公司TEL:010)82673952/82673953SABER电气系统培训手册介绍Saber Electrical Systems介绍本课程的目的是使用户熟悉 Saber模拟器。课程为 Saber功能培训:这一部分通过相关的简单电路和系统集中讲解如何使用 Saber模拟器的各个功能。内容用户应从以下内容出发:如何应用 Saber改善电路和系统设计如何通过 Saber进行由上至下和由下至上设计如何完成不同类型的分析如何使用 Saber模型如何使用 Saber模型库如何查阅帮助如出错如何解决背景要求需具备基本的工程知识熟练的计算机操作·非必需不需要具备仿真经验北京才略科技有限公司TEL:010)82673952/82673953SABER电气系统培训手册相关说明相关说明Saber book, Saber在线帮助系统,描述了 Saber sketch和 Cosmos Scope的特性以及 Saber的一般功能,比如菜单的使用和打印。还提供了每个 Saber命令和 Saber guide界面的详细信息Sorh8 ing Saberi讲解如何在 Saber sketch中生成电路设计图并如何应用 Saber分析Getting Started Using Saber with the Frameway integrations帮助您分析两个示范电路,并使您熟悉在 Cadence和 Mentor图表的框架环境下主要的使用过程。Analyzing Designs Using saber描述了如何应用 Saber获取图表、模拟设计和优化参数值Saber Design Esamples示范如何应用 Saber对设计图进行仿真和分析。北京才略科技有限公司TEL:010)82673952/82673953SABER电气系统培训手册惯例Saber Electrical systems惯例培训手册采用以下惯例ButtonButton这样的字体用来在用户界面上突出显示按键的描述和编号。ComputerComputer”这样的字体用来突出屏幕上输入内容(即您在命令行或某区域输入内容)。Dialog Menu Form“ DialogMenu Forn”这样的字体表示对话框标题土级菜单标题及表格标题。DocnammeNonAme”这样的字体用来指示印刷手写体标题(同 Computer字样)FieldNameFieldName”这样的字体用来突出区域名称。FilenameFilename”这样的字体显示路径称或目录名称。Menuchoice“ Menu choice”这样的体用来突出菜单路径,如引导选择Fie>openDesign单击迅速地按动并松开鼠标键按键并保持按鼠标键,并不松开。双击连续两次快速按动松开鼠标键。北京才略科技有限公司TEL:010)82673952/82673953SABER电气系统培训手册Saber Electrical SystemsLab#1-DC分析在第一个练习,您将对DC(工作点)分析进行基础的了解。这是你在大部分设计中将要作的基本分析。打开RLC设计UNIX用户1.找到 Saber_ Training_ Files/Saber_ Electrical_Training/ Feature Labs目录2.输入: sketchWindows用户:1. itf Start >Programs Synopsys >Saben)XX> Saber Sketch所有用户(从 Saber Sketch下拉菜单中1.选择Fie>Open> Design2左键单击并按住鼠标在菜单上打开下拉萊单。滑动光标选择相应子菜单并展开。点击下拉菜单中部可固定蕖单,即使松开鼠标键,菜单也不会弹回。3.浏览RLC自录(在 Saber_Training Files/Saber_ Electrical_TrainingFeature Labs路径下)。4.双击 Open Design中的exrl文件名(如果文件扩展名可见,选择带有 ai sch扩展名的文件)。RLC示意图显示如下:25mwimid Ivoutv pulse initial: 0ouselu北京才略科技有限公司TEL:010)82673952/82673953SABER电气系统培训手册Lab#1-DC分析从此处,您开始在 Saber Sketch中设计。5.点击Show/ Hide Saber Guide按键,该按键使您可以进λ Saber guide仿真,在整个设计过程中都将用到该按键。(按键位于Saber sketch图标栏的右侧)。Saber guide图标栏出现。工作点分析1.点击 Operating Point按键,幸2.点击OK,接受默认。生成列表,确定工作点(在生成列表前如提示是否保存,回答yes)。如有错误,将有信息提示。点击 Simulation Transcript按键 Smdl,打开 Saber Guide transcrip窗口您可以通过 Saber guide Transcript窗口监控 Saber guide命令进程。也可显示完成一次分析的执行时间。3.当分析完成,从 Saber sketch下拉菜单中选择Results> Operating Point Report2.显示分析结果。4.单击OK接受工作点报告缺省值Report Tool弹出,显示分析结果。注意所有的显示值都为0。检查该结果是否正确,查看驱动滤波器源电压的初始值。该示意图显示电压初始值为0,脉冲值为1。表示在0时刻电源电压为0,所以该结果正确为得到DC分析的非零值,您可以改变电源的初始值,例如,您可以将初始值设为1,脉冲值置为0。这样您将得到棉反的波形改变输人电压并重新分析1.改变示例中电源的初始电压a,在 initial:0处的0附近单击左键b.通过箭头键将光标置于0的右侧(如果需要)c,单击删除键删除0,在该位置键入1d.单击 Return{ Enter)或鼠标左键2.改变示例中的脉冲值a.在puse:1处的0附近单击左键b.通过箭头键将光标置于1的右侧(如果需要)c.单击删除键删除1,在该位置键入0d.单击 Return( Enter)或鼠标左键北京才略科技有限公司TEL:010)82673952/82673953SABER电气系统培训手册Saber Electrical Systems您已完成下面两项工作改变了示例中电源的初始电压及脉冲值。当您编辑列表并输入 Saber时,这些值会随之自动动态改变,这就意味着模拟器已经接收了新值,您不需要保存或重新生成网表(您可以在 Saber Guide Transcript窗口中看到这些值的变化)。现在重新启动DC分析,除了相应的变化,您可以看到 Saber执行分析时有很多选项。3.从 Saber Guide下拉菜单栏中,选择Analyses Operating Point DC Operating Point.*4.在 Operating Point分析中,分析结束后,执行以下操作,工作点报告可以自动显示在Saber guide transcriptt窗口内a.点击 Display After Analysis旁边的Yes按钮b.点击OKc.在 Saber Guide Transcript窗口内查看结果结果显示1V的输入电压产生0909V输出电压。你理解这个结果吗?为什么?为了便于结合给定电压与实际设计示意图进行分析,可按如下方法在 Saber sketch i中显示DC分析结果:标注分析结果1.从 Saber Sketch下拉菜单栏中选择 Results> Back Annotation2.在后注释栏点击OK注意示例中仿真电压如何出现关闭Lab#11.按以下步骤关闭报告及报告工具栏a.选择File>Cose关闭报告,关闭前不保存 de. rpt文件b,.选择File> Close Window关闭报告工具2.恢复电压源初始值,为下一练习作准备(即将初始值还原为0,脉冲还原为1)请告知培训人员您已经完成了第一部分的内容。北京才略科技有限公司TEL:010)82673952/82673953SABER电气系统培训手册Saber Electrical SystemsLab#2一时域分析在本节,您将对RLC滤波器进行时域(瞬态)分析,以确定其脉冲输入响应。继续采用您上一节建立的RLC电路。瞬态分析1.点击 Transient Analysis按钮,2.在时域瞬态分析中,输入数值:a. End Time: Jomb. Time Step: 0. Iu选择该值是因为脉冲升降时间是1毫秒,初始时间长应置为110脉冲时间)Run DC Analysis First: Yesd. Plot After Analysis: Yes-Open Onl3.点击OK执行分析完成瞬态分析, OsmoscOpe.信号管理器和图形窗们命自动打开Cosmos scope的使用当完成分析后, OsmoscOpe自动打开(因为分析中您选择了Yes. Open Only to Plot AfterAnalysis)。同样生成了两个窗口,如下所示信号管理器 Signal Manager:信号管理器显示当前激活状态下了图形文件名称(图形文件包含仿真数据在 OsmoscOpe中可见)。gnal ManagerFe Polle SionalsSignal FiterOpen ClothesPlotsClose Plotfdles( 1]ex die. ac ai plDisplay PottiesSetupMatch All图形文件窗口 Plot file window:图形文件窗口显示相应图形文件中的信号名称。北京才略科技有限公司TEL:010)82673952/82673953
- 2020-12-03下载
- 积分:1