贝叶斯分类器贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。目前研究较多的贝叶斯分类器主要有四种,分别是:Naive Bayes、TAN、BAN和GBN。
于 2020-12-10 发布
0 379
下载积分: 1
下载次数: 6
代码说明:
贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。 贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是: 1、已知类条件概率密度参数表达式和先验概率。 2、利用贝叶斯公式转换成后验概率。 3、根据后验概率大小进行决策分类。
下载说明:请别用迅雷下载,失败请重下,重下不扣分!
发表评论