登录
首页 » Others » PingFangSC-Regular

PingFangSC-Regular

于 2020-12-08 发布
0 317
下载积分: 1 下载次数: 3

代码说明:

精简版的简体PingFangSC-Regular 字体。包括3500个常用字体和字母数字

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ZEMAX中关于光栅的模拟
    对于zemax中光栅的模拟方法的种类进行总结
    2020-12-04下载
    积分:1
  • IEEE14标准配电系统在pscad中的模型
    根据IEEE14标准配电系统节点画出系统模型,无任何多余器件,需要仿真可以自己加器件
    2020-12-07下载
    积分:1
  • 32位linux下安装oracle11g所需软件包
    32位linux下安装oracle11g所需软件包找的好辛苦,终于弄好了。
    2020-12-09下载
    积分:1
  • kubernetes培训PPT
    价值8000元的kubernetes培训PPT,全新详解kubernetes。
    2020-06-03下载
    积分:1
  • 卡尔曼滤波学习笔记
    在移动机器人导航方面,卡尔曼滤波是最常用的状态估计方法。直观上来讲,卡尔曼滤波器在这里起了数据融合的作用,只需要输入当前的测量值(多个传感器数据)和上一个周期的估计值就能估计当前的状态,这个估计出来的当前状态综合考量了传感器数据(即所谓的观察值、测量值)和上一状态的数据,为当前最优估计,可以认为这个估计出来的值是最可靠的值。由于我们在SLAM中主要用它做位置估计,所以前面所谓的估计值就是估计位置坐标了,而输入的传感器数据包括码盘推算的位置、陀螺仪的角速度等(当然可以有多个陀螺仪和码盘),最后输出的最优估计用来作为机器人的当前位置被导航算法以外的其他程序所调用。
    2021-05-06下载
    积分:1
  • 多传感器数据融合讲稿 多传感器数据融合讲稿
    多传感器数据融合讲稿 多传感器数据融合讲稿 多传感器数据融合讲稿 多传感器数据融合讲稿
    2020-12-10下载
    积分:1
  • 人工智能选股-华泰金工研报合集1-7
    人工智能选股框架及经典算法简介华泰人工智能系列之一人工智能和机器学习并不神秘人工智能和机器学习方法并不神秘,其本质是以数理模型为核心工具,结合控制论、认知心理学等其它学科的研究成果,最终由计算机系统模拟人类的感知、推理、学习、决策等功能。理解常用的机器学习算法,有助于澄清对人工智能的种种误解和偏见,帮助我们更清晰地认识人工智能的长处和局限,从而更合理、有效地将人工智能运用于投资领域。
    2020-12-11下载
    积分:1
  • 非线性动力学与混沌基础_正文
    ch1:非线性动力学理论基础ch2:混沌ch3:混沌的一些实例是《非线性动力学》的简化版
    2021-05-06下载
    积分:1
  • 太阳能 手机 充电器
    太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器太阳能 手机 充电器
    2020-12-10下载
    积分:1
  • 剔除测量数据中异常值的若干方法
    剔除测量数据中异常值的若干方法,第1期何平:剔除测量数据中异常值的若干方法21表3n,a相应的Y值3.91-00.010.010.6790.576190.4620.889).765120.6420.5460.5350.4500.7800.642130.6150.52l210.5240.44060.6980.560140.6410.5460.5140.4300.6370.507150.616230.50580.6830.554160.5950.5070.4130).406100.447180.5610.475表4Z,与n值的对应关系3458902131415161820301050zc1.381.541.651.731.801.881.921.962.002.032.072.102.132.152.202.242.392.492.58表51组测量数据(已按顺序从小到大排好)810t20.3020.3920.3920.3920.4020.4020.4]20.4120.4220.4220.4220.4320.4320.4320.43查表3得到临界值Y。(15,0.05)=0.525,根据也都有其局限性。例如:所有的准则都是以数据按正态狄克逊准则,由于Y2>%(15,0.05),故t值是异常分布为前提的,当偏离正态分布时,判断的可靠性将受值,应予舍弃。影响。还有几个准则对n值的要求也各有不同:当大样程序框图如图3所示本测定时,使用莱因达准则最适合,但当小样本测定24肖维勒准则应用软件流程图及实例时,则一般推荐使用格拉布斯准则和狄克逊准则。而肖计算算术平均值t=20.405维勒准则在某种程度上讲仅仅是莱因达准则的补充计算剩余误差v及均方差a=0.01498在实际测量中,一般取测量次数n=5~20次,特从表4中查得相应的Z值(n=15,故Z2=2.13)别精密的测量,也很少超过100~200次。因此,使用根据肖维勒准则检测l1是否为异常值以上各种准则时,必须注意测量次数的限制。对于莱因1-t|=0.105达准则、一般建议测量次数大于或等于50次,而对于而Zσ=2.13×0.01498≈0.03191格拉布斯准则和狄克逊准则,则建议小于或等于20次。但这一区别并不是十分严格的由于|1-t1>z,则t1值异常,应予舍弃。程序框图对小样本来说,由于格拉布斯准则能给出较严格如图4所示。的结果,狄克逊准则无需计算X和o,方法简便,且23几种方法的进一步讨论者的概率意义明确。因此,它们能较好地适用于采样次从以上的应用情况来看,似乎各种准则的应用实数不太多的一般测量列践都很一致,但这只是个特例,并没有普遍性。举这个设X为N(0,1),在1个大小为n的子样中混入例子,只为了更好地说明几种准则都能得到很好的应个Y:N(μ,δ)的子样。有研究结果表明:格拉布用。需要指出的是,以上各准则都是人为主观拟定的,斯方法的检出概率P略高于狄克逊方法的检出概率直到目前为止,还没有统一的规定,因此,它们的应用PD,如表6所示:(N(0,1)叫作标准正态分布)o1994-2012ChinaAcademicJournalElectronicpUblishingHouse.Allrightsreservedhttp://www.cnki.net2航空计测技术第15卷STARTSTARTSTARTSTART输入数据输入数据输入数据输入数据计算算术平均值入计x根据n值,及均方根偏差从表2中计算出相应y计算算术平均值计算剩余误差;,计算T值并选定均方根偏差σ危险率a选定危险率a计算剩余误差v,均方根偏差判别粗大误差查表得相应的(n,a)从表3中查出%(n,a)值从表4中查出相应Z值打印输出结果判别数据是否为异常?判别敦据是否异常判别粗大误差ENDExDENDEND图1莱因达准则应图2格拉布斯准则图3狄克逊准则应图4肖维勒准则应用程序框图应用程序框图用程序框图用程序框图表6P与PD的比较舍。但是,对待粗大误差,除从测量结果中及时发现和利用剔除原则鉴别外,更重要的是提高工作人员的技术a(%)水平和工作责任心,不要在情绪不宁和极度疲劳的情况5.01.0下,进行重要的测量工作。另外,要保证测量条件的稳定,防止因环境条件剧烈变化而产生的突变影响。只有δ11221122这样,才能提高测量的精度,得到满意的测量结果PG(%)10.240.429.854.22.515.712.731.3参考文献PD(%)9.335.726.850.02.212.910.526.31梁晋文等编著.误差理论与数据处理.北京:中国计由于混入的Y不一定是子样中最大的数据,所以,量出版社,1989实际检出效果还要高一些2何国伟编著,误差分析方法.北京:国防工业出版社,4结束语3王文松.测量列中离群值的判断.电测与仪表,1992,从以上论述可以看出,在进行测量数据处理时,可11)以应用各种准则进行粗大误差判别,以决定数据的取o1994-2012ChinaAcademicJournalElectronicpUblishingHouse.Allrightsreservedhttp://www.cnki.net
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载