登录
首页 » Others » TIN(delaunay三角网)生成算法

TIN(delaunay三角网)生成算法

于 2020-12-07 发布
0 305
下载积分: 1 下载次数: 1

代码说明:

使用C#实现的delaunay三角网生成算法。使用说明:运行后在窗口中单击鼠标添加样采样点,当采样点大于等于3时自动生成delaunay三角网;点击工具栏上的按钮可以显示每个三角形的外心。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 泛目录软件和教视频.zip
    泛目录实用软件和教程指导操作.泛目录站群系统,免授权,快速提升网站收录和网站权重!!!泛目录二级目录程序是由SEO技术经验丰富的一群老司机们闭门专心历经长达几个月时间研发而成,目的只有一个,那就是为了能快速做出好的排名效果!
    2020-12-10下载
    积分:1
  • STM32L151C8T6 UCSOII 代码 串口中断接收
    使用UCOSII最新版本2.92,程序中一共创建了三个任务,包括LED闪烁,串口收发,SPI收发,开发环境keil4,CPU是STM32L151C8T6
    2020-12-10下载
    积分:1
  • 三菱plc和fx2n-4ad-tc实现温度pid闭环控制系统的学习参考
    三菱plc和fx2n-4ad-tc实现温度pid闭环控制系统程序设计
    2020-12-11下载
    积分:1
  • 物流配送蚁群算法
    物流配送蚁群算法matlab源码,希望对你有帮助!共四个文件夹:可执行文件,算法实现部分代码,测试数据,算法文档。
    2021-05-06下载
    积分:1
  • 单纯形法
    单纯形法matlab程序,运用matlab写出单纯形法基本程序,单纯形入门。
    2020-12-09下载
    积分:1
  • 民航acars资料整理
    民航使用的acars系统采用非加密数据格式,可以利用短波和超短波接受解调acars报文,实时反馈航班信息
    2021-05-06下载
    积分:1
  • 数字图像去噪(去雾)效果客观指标:PSNR、ISNR、MSE、误检率和漏检率算法
    本算法代码用matlab实现,用于计算图像去噪效果客观指标:峰值信噪比,均方误差,漏检率、漏检率,信噪比改善因子等,代码带有注释。
    2020-12-11下载
    积分:1
  • 51单片机485(modbus协议)通信
    采用51单片机作为主控制器,通讯方式为485总线,通讯协议为Modbus,波特率为9600,8位数据,1个停止位,无校验位; 本程序作为从机部分编写的;
    2020-12-01下载
    积分:1
  • 标记分水岭分割算法的matlab实现
    应用标记符控制分水岭分割 有效解决了分水岭算法在图像分割中的过分割问题
    2020-12-10下载
    积分:1
  • 语音信号处理中基频提取算法综述
    语音信号处理中基频提取算法综述,论述了各种基频检测的算法,对比分析各方法与思想,不错的总结增刊张杰等:语音信号处理中基频提取算法综述101信号是由频率具有谐波关系的信号组成的,因此有的一个改进是采用多分辩率方法。该方法的思想是:很多尝试利用频域信息提取基频的方法如果一个特定算法在特定分辨率下的准确性是可疑21基于滤波器的算法的,那么采用更高或者更低的分辨率,可以进一步21.1最佳梳状滤波器法判断前面的基频估计是否可信。如果在全部或人部最仹梳状滤波器法閃是具有高鲁棒性但计算代分的分辨率下求得相同的基频,那么该频率值就可价很大的算法。一个梳状滤波器有很多等距离分布以作为最终的基频估计结果。当然,在带来好处的的通带,在最佳梳状滤波器算法中,通带的位置都同时,该方法也会带来计算量上的代价,因为针对是由第一个迸带决定的,即通带的中心频率都是第每个分辨率都需要重新计算频谱,这也是为什么一个通带中心频率的整数倍。输入信号通过多个与多分辨率的傳里叶分析比专门的多分辨率变换(如第一个通带中心频率不同的梳状滤波器。如果输入离散小波变換)要慢的原因信号是由一组频率成谐波关系的信号组成的,那么2.4离散小波变换法滤波器的输出在全部谐波成分都通过滤波器时达到离散小波变换是一个强大的工具,它允许在连最大。但是如果信号只有一个基频成分,该方法就续的尺度上把信号分解为高频成分和低频成分,它会失效,因为会有很多个梳状滤波器能让信号通过。是时间和频率的局部变换,能有效地从信号中提取不过,语音信号的频率具有谐波结构,所以可采用信息。与快速傅里叶变换相比,离散小波变换的主该方法提取基频。要好处在于,在髙频部分它可以取得好的时间分辨2.1.2可调的IR滤波器率,在低频部分可以取得好的频率分辨率。文献四提出了一种基于中心频率可调节的带通3统计的方法IR滤波器提取棊频的方法,随着用户的调节,滤波器的中心频率扫过整个频域。当输入信号的一个强在某种意义上,基频提取的问题可以被看作是的频率成分在通带沱围内时,滤波器会输出最大值,个统计问题。每一个输入帧都被划分给一组类中信号的基频就可以用此时滤波器的中心频率来估的一个,代表信号的基频估计。所以很多研究者计。文献[9提到,对于可调的I滤波器,有经验的直试图将现代的统计方法应用于基频提取问题用户能够识别只有一个谐波结构的信号的输出和包Boris和 Xavier发表了一系列使用最人似然法估含多个基频信号的输出的差异计基频的方法。他们的模型如卜:观察集是语音信2.2倒谱分析法号分帧后做短时傅里叶变换的结果,每一个观察都倒谱分析是谱分析的一种方法,翰出是傅里叶被看作是基频激励产生的信号与其他剩余信息(包变换的幅度谱取对数后做傅里叶逆变换的结果。该括非谐波部分和噪声)两部分的混合。该模型是由方法所依据的理论是,一个具有基频的信号的傅立般的语音信号产生的模型的简单化得到的,假没叶变换的幅度谱有一些等距离分布的峰值,代表信个语音包括在基频及其整数倍点的值处较大的谐波号中的谐波结构,当对幅度谱取对数之后,这些峰成分,以及在非谐波处和噪声处的很小的值。对于值被削弱到一个可用的范围。幅度谱取对数后得到一组候选的基频值,该方法计算每一个观察可能是的结果是在频域的一个周期信号,而这个频域信号由某一个基频产生的概率,并将概率最大的基频值的周期(是频率值)可以认为就是原始信号的基频,所作为最终的估计值。所以候选的基频值的选择是很以对这个信号做傅里叶逆变换就可以在原始信号的重要的,因为从理论上讲,观察可能对应着任意的基音周期处得到一个峰值基频值。另妒,如果对信号的傅里叶变换的嘔度谱取对数后的结果直接进行分析,而不是雨接着做傅里叶4算法的改进逆变换,就是谐波成分谱的方法。进一步,如果在前面提到的每种算法都有自己的改进方法,下求频域的变换时不使用傅里叶变换,而使用能使频面介绍两种对以上大部分算法均适用的改进方法。谱更加精细的Chip变换,就是基」Chi变换的提取41人的听觉模型基频的方法,该方法具有高分辨率和高鲁棒性。由于基频提取本身就是听觉感知问题,所以所23多分辨率的方法有的算法都可通过加入人耳的听觉模型提扃性能对于任何基于傅里叶分析的频域方法都可以做人耳的听觉模型将人的听觉系统对声音信号的处理102电子科技大学学报第39卷分为分析、传递和还原3个阶段。分析阶段主要考虑5经典的基频检测方法耳蜗的分频效应,耳蜗的外端对高频敏感,内端对低频敏感,可以用一组中心频率不同的带通滤波器自从有了语音信号分析饼究这门学科以来,基来模拟。传递阶段声波振动沿基膜传播,并在听觉频的检测一直是一个重点研究的课题。经典的基频神经纤维内产生电流,最终传入听觉中枢。还原阶检测方法可以大致分为3类,如表1所示段听觉系统提取语音中诸如音质、音调、时域和位表1经典的基音检测方法以及特点置等信息。分类基因检测方法特点在声学中,声强是指单位时间内通过垂直」声由多种简单的波形峂值泼传播方向的单位面积的声波能量,用表示。当声并行处理法检沏器提取基音周期波的频率在20~20000Hz(可闻频率)之间,而声强波形根据各种理沦探作,从波形中去行计法数据减少法达到一定的强度(听阈),就能被人耳感知。前人大量掉修正基音以外的数的实验测试结果表明,人耳对不同频率的声波感受讨零率法利用波形的讨零率,差眼于重复图形到相同响度时的声强是不同的。人耳对两端频段的利用语音波形的自相关函数提取自相关法声波反应较为迟钝,而对中间频段的声波反应相对基音,采用中心削波平坦欠理频谱,及其改进较为敏感采用峰值削波可以简化运算对于任意的频域方法,简单的改进是用Q值恒语音波形降低采样率斤,进行IPC分析相关定的谱变换方法代替傅里叶变换。恒的变换方法SIFT法用逆滤波器平坦处理频谱,通过预测误差处埋法计算代价更人,但更接近于人的听觉感知系统。的自相关函数恢复时间精度在决定是否使用人的听觉模型吋必须考虑两个采用平均幅度差函数(AMDF检测周期AMDF法性,也可以根据残差信号的因素:(1)基频提取的用途。如果应用的目的很简单,AMDF法行提取要求也不是太高,那么人的听觉感知因素也许不是倒谱法根据对数功率谱的傅立叶反变换很必要。(2)计算的复杂度。使用人的听觉感知模型分离频谱包络和微细结构会使计算复杂度大大增加,如果原来算法的复杂度变换法在频谱上求出基频高次谐波成分的直方已经很大,再加入人的听觉感知模型可能会使算法循环直方图法图,根据高次谐波的公约数决定某音的复杂度过高4.2基频的跟踪(1)波形估计法。直接由语音波形估计、分析波另一种对基频提取的改进是基频跟踪。前面提形上的周期峰值到的基频提取都是在个单独的时间窗内进行的。(2)相关处珄法。时域中周期信号最明显的特征人的听觉系统是能够眼踪输入信号的基频的。一个是波形的类似性,因而可以道过比较原始信号和它只包含有限个基音周期的时间窗内的基频是很难提位移后的信号之间的相似性确定基音周期。该类方取的。但是,如果输入是连续的语音信号,相当于法抗波形的相位失真能力强,且馍件处理结构简单。很多时间窗个接个输入,基频的提取反而变得3)变换法。将语音信号变換至频域或倒谱域估很容易。研究发现,语音信号的基频具有连续性,计基音周期即前后两帧的基频是连续的,不出现跳变。一帧内6总结的基频提取常见的问题是得到的佔计值是正确值的本文列出了若干基频提取的主要方法,对它们整数倍或者整数倍分之一。针对该问题,利用语音分别进行了简单的介绍,并讨论了对算法的改进。信号基频的连续性,可对基频提取算法做一个简单需要注意的是,所介绍的方法都是针对一个语音信的改进:在计算某一恢的基频时对于它前血一帧的号而言的,对于混合的语音信号的基频提取,如果基频附近的值给予更大的可能性,即一唢语音信号可以先将混合的语音信号分离丌,那么基频提取就中基频的值不可能出现崁变的情况。这就是简单的会变待很简单。同样地,在一些基于时频分析的语基频跟踪思想,并且不会在计算上增加任何复杂度。音分离算法中,如果知道了各个语音的基频,那么另外一种比较复杂的基频跟踪方法是使用隐马语吝分离也就变得很容易解决了。尔科大模型。(下转第126页)126电子科技大学学报第39卷L9 GONG L, NEEDIIAM R, YAIIALOM R Reasoning about1990 IEEE Symposium on Research in Security and privacybelief in cryptographic protocols C]/Proceedings of the Los Alamitos, CA: IEEE Computer Society Press, 1990编辑税红(上接第102页)参考文献[5 BENJAMiN K. Spectral analysis and discrimination by[ DELLER了R, PROAKIS了 G HANSEN J H Lzero-crossings[C]Proceedings of the Institute of ElectricalDiscrete-time processing of speech signals [M]. New York:and Electronics Engineers. S 1.: [ s.n. 1986: 1477-1493[6] CURTIS R. The computer music tutorial]. CambridgeMaxell McMillan. 1993MIT Press. 1996[2 FORT A, ISMAELLI A, MANFREDI C, et al. Parametric[7] DE CHEVEIGNE A, YIN H K. A fundamental frequencyd non-parametric estimation ofapplication to infant cry[]. Med Eng Phys, 1996, 18(8estimator for speech and music[J]. Journal of the AcousticalSociety of America, 2002,11(4):1917-1930[3] PARSONS T. Voice and speech processing[M]. New York[8 EARGLE J M. Music, sound and technology M. TorontoHill,1986.Van Nostrand reinhold. 19954 RABINERR L, SCIIAFERR W. Digital processing ofspeech signals. Englewood Cliffs M]. New Jersey: Prentice编辑税红Hll,1978
    2020-12-05下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载