登录
首页 » Others » 智能人脸识别算法及FPGA的实现

智能人脸识别算法及FPGA的实现

于 2020-12-06 发布
0 153
下载积分: 1 下载次数: 4

代码说明:

人脸自动识别技术是模式识别、图像处理等学科的一个最热门研究课题之一。随着社会的发展,各方面对快速有效的自动身份验证的要求日益迫切, 而人脸识别技术作为各种生物识别技术中最重要的方法之一,已经越来越多的受到重视。对于具有实时,快捷,低误识率的高性能算法以及对算法硬件加速的研究也逐渐展开。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • 单击/网络五子棋(毕业设计包括论文)
    在学校时的毕业设计,单机的算法是借鉴别人的.是java编写的一个单机和网络五子棋.代码不多,有单机和网络版,有播放音乐,换背景色等功能
    2020-11-29下载
    积分:1
  • 光纤Bragg光栅反射谱
    编写了matlab程序模拟FBG的反射谱,通过改变FBG的各种物理参数可以求得对应的FBG反射谱。
    2021-05-07下载
    积分:1
  • 基于Matlab的双闭环直流电机调速系统的仿真
    基于Matlab的双闭环直流电机调速系统的仿真
    2020-12-09下载
    积分:1
  • STM32_IAP_UPDATA带C#上位机
    大家好,我也是菜鸟一只,给大家分享些我自己写的东西。谢谢大家。此文档包括C#上位机(可注册,也可点击版本号直接进入)、STM32的IAP以及APP程序。大家都可以成套学习。也欢迎大家找出bug。特别感谢正点原子,STM32的程序的库大部分采用原子哥的程序。
    2020-06-26下载
    积分:1
  • 多径衰落信道下OFDM仿真
    此程序为在多径衰落信道下OFDM系统的抗噪声性能。 其中包括cyclic prefix的插入;多径信道的模拟, 以及用pilot进行信道估计。除此以外 还包括仿真波形,SNR曲线等等。(以及本人的实验报告).
    2020-12-05下载
    积分:1
  • ECharts3中国地图json文件及全国省的json文件
    ECharts3中国地图json文件及全国省的json文件;Echarts3地图数据json文件(含全国和省) ,echarts3目前已经不支持下载地图数据,此附件中包含了json数据格式,以及调用示例。
    2020-12-11下载
    积分:1
  • C#设置双屏显示模式
    C#实现在Win7下双屏扩展、双屏复制和停止扩展以及实现在xp下双屏扩展的功能
    2020-12-04下载
    积分:1
  • 复杂系统与复杂网络-何大韧
    复杂系统与复杂网络-何大韧,word版本的资料,真的是大爱啊,我觉得超赞
    2020-12-09下载
    积分:1
  • 数字调制信号仿真labview序(MASK、MPSK、MQAM等)
    可以仿真所有常见的数字通信信号,如2ASK、4ASK、8ASK、2FSK、4SFK、8FSK、16FSK、BPSK、QPSK、8PSK、16PSK、16QAM、32QAM、64QAM、128QAM、V.29等等。信号的各种参数可以自己随意设置,提供参数输入接口。
    2020-12-05下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载