登录
首页 » Others » RBF神经网络matlab程序

RBF神经网络matlab程序

于 2020-12-06 发布
0 121
下载积分: 1 下载次数: 1

代码说明:

RBF神经网络,实例matlab程序,学校资料

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • uniapp序源码.rar
    【实例简介】这是本人在使用uniapp开发APP或者微信小程序时的框架,包含个人中心和启动页广告,以及登录等界面。开发者直接使用此框架,在此基础上开发自己的内容。后台网址也写了一些,大家可以更换自己服务器网址,我本人后台是用php写的。分享给大家~
    2021-12-02 00:43:45下载
    积分:1
  • Hilbert-Huang变换(HHT)代码
    优秀论文及配套源码。Hilbert-Huang变换(HHT)是一种新的非平稳信号处理技术,该方法由经验模态 分解(EMD)与Hilbert谱分析两部分组成。任意的非平稳信号首先经过EMD方法处理后被分解为一系列具有不同特征尺度的数据序列,每一个序列称为一个固有模态函数(IMF),然后对每个IMF分量进行Hilbert谱分析得到相应分量的Hilbert谱,汇总所有Hilbert谱就得到了原信号的谱图。该方法从本质上讲是对非平稳信号进行平稳化处理,将信号中真实存在的不同尺度波动或趋势逐级分解出来,最终用瞬时频率和能量来表征原信号的频率含量。 本文研究了基于HHT的暂态电能质量扰动检测方法,介绍了H
    2020-05-31下载
    积分:1
  • 主动噪声控制的经典FX-lms算法仿真
    主动噪声控制的经典FX-lms算法仿真,包括算法框图,结果分析
    2020-12-05下载
    积分:1
  • 全国矢量地图大全shp格式.rar
    全国矢量地图大全 shp格式,包含全国各省市自治区的地理行政区划图、水系图、交通网线等线状地物和面状地物。
    2021-05-07下载
    积分:1
  • LabVIEW DataSocket入门
    基于LabVIEW DataSocket的HelloWorld ,可以实现在同一局域网下,远程发送数据
    2020-12-09下载
    积分:1
  • 稀疏保持投影matlab代码
    运用稀疏保持投影进行特征提取(已应用于人脸识别领域)
    2020-12-01下载
    积分:1
  • TCP/IP协议详解PPT总结-很有帮助
    TCP/IP是大师的另一个优秀的书籍,堪称经典,值得一看。
    2020-06-01下载
    积分:1
  • 线性调频信号短时傅里叶时频分析
    首先构造三个线性调频脉冲信号,然后用短时傅里叶变换进行时频分析,生成二位平面图和三维立体图
    2021-05-06下载
    积分:1
  • (温度PID)实验指导书(三菱).pdf
    三菱温度PID控制实例及程序
    2020-12-08下载
    积分:1
  • Two Dimensional Phase Unwrapping Theory Algorithms and Software
    Two Dimensional Phase Unwrapping Theory Algorithms and Software,扫描文档,清晰度一般。GTWO-DIMENSIONALPHASE UNWRAPPINGTHEORY ALGORITHMSAND SOFTWAREDennis C. ghigliaSandia National LaboratoriesAlbuquerque, New MexMark D. PrittLockheed Martin CorporationGaithersburg, Maryland藏A WILEY-INTERSCIENCE PUBLICATIONJOHN WILEY SONS, INCNew York Chichester Weinheim Brisbane Singapore / Toronto2005060radar interferogram generated byDeathon each pass, The terrain elevations can be computed from thebut the phase differences must fig problem In regions of steeprrupted where there are radar shadow and "layover"effects. Surfaceoccurred between the two passes, which were 24 days apar alsopThis image was acquired as part of a program for the Terrain Modeling Project Officended byEngineering Center. The SAR data was provided by Radarsat Intenational THinterferogram was generated and provided by Vexcel Corporation, Boulder, Coloradop00This text is printed on acid-free paper.Copyright o 1998 by John Wiley Sons, Inc. All rights reservedNo part of this publicationreproduced, stored in a retrievalsystem or transmitted in any form or by any means, elechanical photocopying, recording, scanning or otherwise,xcept as permitted under Sections 107 or 1O% of the 1976of the Publisher or authorization through payment of theontates Copyright Act, without cither theppropriate per-copy fee to the Copyright Clearance Center, 222750-4744. Requests to the Publisher for permission show(978)ood Drive, Danvers, MA 01923, (978)750-8400, faxnc.. 605 Third A venue. New York, NY 10158-0012(212)850-6011fax(212)850-6008,E-Mail:PERMREQ@WILEY.COMTwo-dimensional phase unwrapping: theory, algorithms, andsoftware/Dennis C Ghiglia and Mark D Pritt.SBN0-471-24935-1(cloth: alk. paper)1. Synthetic aperture radar. 2. Signal processing--Mathematics3. Interferometry. I Pritt. Mark D. [L. Title621.367-dc2l97-3803410987654321;4TWO-DIMENSIONALPHASE UNWRAPPINGFOREWORDTwo-dimensional phase unwrapping is the type of problem that is typically thedomain of the mathematician. It is both complex and abstract However, phaseunwrapping is also the core technology that enables radar interferometryOver the past decade interferometry has changed the way that we use radardata. Radar data are now used for precise measurement of surface topography inclouded regions. Additionally, spaceborne radar systems have proved effectivefor measuring surface changes from earthquakes and volcanic eruptions. Theseapplications have created a new class of radar data users primarily involved inmapping and remote sensing applicationIn Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Softwarethe authors unlock the mystery of phase unwrapping in interferometric datarocessing. This text provides a clear, concise treatment of phase unwrappingthat cannot be found in any other source. It presents for the first time therelationship between theory and application. Its uniform treatment of thevarious phase unwrapping techniques makes it a valuable resource for anyengineer or scientist involved in processing or exploitation of interferometricexpect that radar interferometry will increase in importance over the comingdecade with the development of airborne and spaceborne sensor systemsdesigned to optimally exploit this tcchnology. Two- Dimensionsping: Theory, Algorithms, and Software is an important contribution to ourinderstanding of radar interferometry that will bencfit both research intoadvanced techniques and the design of these future sensor systemsJOHN C. CURLANDEPresident and CEOVexcel CorporationPREFACETwo-dimensional phase unwrapping arises most naturally in, but is notrestricted to, interferometric applications. Measured or calculated phasevalues from two or more mutually coherent multidimensional signals are relatedn a nonlinear manner to a desired physical quantity of interest. The nonlinearityis in the form of"wraps"or cycle discontinuities where an underlying two-dimensional phase is wrapped into the interval (T, r. The wrapped phasemust somehow be unwrapped in order to provide an estimate of the underlyingphysical quantity. Estimation of surface topography from interferometricsynthetic aperture radar(SAR)or extremely accurate profiling of mechanicaparts by optical interferometers are two such examplesOriginally developed for military reconnaissance, SAR is now experiencingnew life in civil applications. In fact civilian and commercial interests are rapidlbecoming the drivers of technology. Clever utilization of the coherent SArimagery in interferometric configurations makes possible the measurement ofsurface topography to accuracies much better than the spatial resolution( 0.3meters to several meters)of the SaR images themselves. Indeed, as is commonplace with interferometers, measurement sensitivities are on the order of theoperating wavelength, which is typically a few centimeters for SAR. Imaginggeometries, noise, and other operational factors degrade performance some-what from centimeter-scale accuracies, but nevertheless SAR interferometrymakes possible global topographic mapping in a timely fashion, in daylight or atnight, in all weather conditions, and with unprecedented accuracyinterferometry also can detect deformations of the earths crust on the orderof millimeters, a capability that shows promise for the timely detection ofearthquakes or volcanic eruptionsThese exciting possibilities have led to an explosive growth in the field of phaseunwrapping as indicated by the increasing number of journal publicationsNewcomers to SAR interferometry and related disciplines will eventuallyonfront the phase unwrapping problem and, undoubtedly, will encounter arather bewildering variety of ideas and algorithms, including those based onneural networks, simulated annealing, cellular automata, genetic algorithms,and other unusual constructs. Which of these are good? Which are not? We doThroughout this book we use the notation(-丌,丌 to represent the interval-丌
    2020-12-12下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载