登录
首页 » Others » 基于matlabGUI的小车倒立摆pid控制

基于matlabGUI的小车倒立摆pid控制

于 2020-12-05 发布
0 155
下载积分: 1 下载次数: 3

代码说明:

一个用matlab的GUI编写的小车倒立摆环境,自带pid控制

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 使用单目摄像头测量距离
    python程序,在opencv下使用单目摄像头,测量人到摄像头的距离,行人检测。
    2020-12-05下载
    积分:1
  • seafile私有云的api的C#客户端实现
    seafile私有云的api的C#客户端实现
    2020-11-02下载
    积分:1
  • 三维重建-matlab
    这个zip文件包含在案例研究中使用的文件用于图像处理的研讨会由公司给予。总之,代码将两幅取自一个坚实的木制销子相邻层。这些图像可以将基于特征使得固体重建。
    2020-06-04下载
    积分:1
  • ACM竞赛常用算法及代码
    ACM竞赛中常用的经典算法及具体代码C++实现,pdf电子书格式,完整链接.内容涉及图论 数论 排序 高精度 数据结构 计算几何 字符串处理等.
    2020-12-08下载
    积分:1
  • 偏微分方快速求解的托马斯算法matlab
    偏微分方程快速求解的托马斯算法matlab的m文件,主要应用于PM方程等的数值求解中
    2020-12-09下载
    积分:1
  • 西工大电子实习单片机序.rar
    【实例简介】西工大的童鞋们单片机的程序,不会做就下载吧!!
    2021-11-28 00:37:02下载
    积分:1
  • TSP贪心算法实现从武汉出发,进行34个省会的遍历,最后回到武汉,要求输出遍历路径和最后总里
    实现从武汉出发,进行34个省会的遍历,最后回到武汉,要求输出遍历路径和最后总里程贪心算法原理:在贪婪算法(greedy method)中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪婪决策的依据称为贪婪准则(greedy criterion)。
    2020-12-09下载
    积分:1
  • 利用Matlab写,记录二值化图像像素点,利用最小二乘法迭代实现直线拟合,并在原二值化图像上面画上直线,并记录直线方(包括斜率和截距这两个参数)
    本程序代码是通过Matlab编写完成的,里面有用高清相机拍摄的图片提取的二值化直线图像,每一幅图像都有几个MB;虽压缩包只有几十kb,但功能完善,没有任何问题。通过记录二值化图像像素点,利用设定的距离阈值参数,然后利用距离阈值参数通过最小二乘法迭代来剔除偏差较大的像素点,进而实现直线拟合,并在原二值化图像上面画上直线,记录直线方程(包括斜率和截距这两个参数)。请放心下载,资源没有任何问题。
    2020-11-27下载
    积分:1
  • 系统辨识大牛Ljung写的MATLAB系统辨识使用手册
    系统辨识大牛Ljung编写的MATLAB系统辨识使用手册,这本书详细地介绍了在MATLAB已经所属simulink环境下,系统辨识工具箱的一些使用办法,是一本非常经典的教材!Revision Historypril 1988First printingJuly 1991Second printingMay1995Third printingNovember 2000 Fourth printingRevised for Version 5.0(Release 12)pril 2001Fifth printingJuly 2002Online onlyRevised for Version 5.0.2 Release 13)June 2004Sixth printingRevised for Version 6.0.1(Release 14)March 2005Online onlyRevised for Version 6.1.1Release 14SP2)September 2005 Seventh printingRevised for Version 6.1.2(Release 14SP3)March 2006Online onlyRevised for Version 6.1.3(Release 2006a)September 2006 Online onlyRevised for Version 6.2 Release 2006b)March 2007Online onlyRevised for Version 7.0 ( Release 2007a)September 2007 Online onlyRevised for Version 7.1 (Release 2007bMarch 2008Online onlyRevised for Version 7.2(Release 2008a)October 2008Online onlyRevised for Version 7.2.1 Release 2008b)March 2009Online onlyRevised for Version 7.3(Release 2009a)September 2009 Online onlyRevised for Version 7.3.1(Release 2009b)March 2010Online onlyRevised for Version 7. 4 (Release 2010a)eptember2010 Online onlyRevised for Version 7.4.1(Release 2010b)pril 2011Online onlRevised for Version 7.4.2(Release 2011a)September 2011 Online onlyRevised for Version 7.4.3(Release 2011b)March 2012Online onlyRevised for Version 8.0( Release 2012aabout the DevelopersAbout the Developersystem Identification Toolbox software is developed in association with thefollowing leading researchers in the system identification fieldLennart Ljung. Professor Lennart Ljung is with the department ofElectrical Engineering at Linkoping University in Sweden. He is a recognizedleader in system identification and has published numerous papers and booksin this areaQinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut Nationalde recherche en Informatique et en Automatique(INria) and at Institut deRecherche en Informatique et systemes Aleatoires (Irisa), both in rennesFrance. He conducts research in the areas of nonlinear system identificationfault diagnosis, and signal processing with applications in the fields of energyautomotive, and biomedical systemsPeter Lindskog. Dr. Peter Lindskog is employed by nira dynamiAB, Sweden. He conducts research in the areas of system identificationsignal processing, and automatic control with a focus on vehicle industryapplicationsAnatoli Juditsky. Professor Anatoli Juditsky is with the laboratoire JeanKuntzmann at the Universite Joseph Fourier, Grenoble, france. He conductsresearch in the areas of nonparametric statistics, system identification, andstochastic optimizationAbout the developersContentsChoosing Your System Identification ApproachLinear model structures1-2What Are Model objects?Model objects represent linear systemsAbout model data1-5Types of Model objectsDynamic System Models1-9Numeric Models1-11umeric Linear Time Invariant (LTD Models1-11Identified LTI modelsIdentified Nonlinear models1-12Nonlinear model structures1-13Recommended Model Estimation Sequence1-14Supported Models for Time- and Frequency-DomainData,,,,,,,1-16Supported Models for Time-Domain Data1-16Supported Models for Frequency-Domain Data1-17See also1-18Supported Continuous-and Discrete-Time Models1-19Model estimation commands1-21Creating Model Structures at the command Line ... 1-22about system Identification Toolbox Model Objects ... 1-22When to Construct a Model Structure Independently ofEstimation1-23Commands for Constructing Model Structures1-24Model Properties1-25See als1-27Modeling Multiple-Output Systems ......... 1-28About Modeling multiple-Output Systems1-28Modeling Multiple Outputs Directly1-29Modeling multiple outputs as a Combination ofSingle-Output Models.......1-29Improving Multiple-Output Estimation Results byWeighing Outputs During Estimation ....... 1-30Identified linear Time-Invariant models1-32IDLTI Models1-32Configuration of the Structure of Measured and Noise oRepresentation of the Measured and noise Components foVarious model Types1-33Components ....1-35Imposing Constraints on the Values of ModeParameters1-37Estimation of Linear models1-8Data Import and Processing2「Supported Data ...2-3Ways to Obtain Identification DataWays to Prepare Data for System Identification ... 2-6Requirements on Data SamplingRepresenting Data in MATLAB Workspace·····Time-Domain Data Representation2-9Time-Series Data Representation2-10ContentsFrequency-Domain Data Representation ....... 2-11Importing Data into the Gui2-17Types of Data You Can import into the GUi2-17Importing time-Domain Data into the GUI2-18Importing Frequency-Domain Data into the GUI2-22Importing Data Objects into the GUI ......... 2-30Specifying the data sampling interval2-34Specifying estimation and validation Data2-35Preping data Using Quick StartCreating Data Sets from a Subset of Signal Channelo2-362-37Creating multiexperiment Data Sets in the gUi2-39Managing data in the gui ............. 2-46Representing Time- and Frequency-Domain Data Usingiddata object2-55iddata constructor2-55iddata Properties.........2-58Creating Multiexperiment Data at the Command Line .. 2-61Select Data Channels, I/O Data and Experiments in iddataObjects2-63Increasing Number of Channels or Data Points of iddataObjects2-67Managing iddata Objects2-69Representing Frequency-Response Data Using idfrdObiec2-76idfrd Constructor2-76idfrd Properties2-77Select I/o Channels and Data in idfrd Objects ..... 2-79Adding Input or Output Channels in idfrd Objects2-80Managing idfrd Objects2-83Operations That Create idfrd Objects2-83Analyzing Data quality2-85Is your data ready for modeling?2-85Plotting Data in the guI Versus at the command line2-86How to plot data in the gui2-86How to plot data at the command line2-92How to Analyze Data Using the advice Command2-94Selecting Subsets of Data2-96IXWhy Select Subsets of Data?2-96Extract Subsets of Data Using the GUI2-97Extract Subsets of data at the Command Line2-99Handling Missing Data and outliers2-100Handling missing data2-100Handling outliers2-101Extract and Model Specific Data Segments2-102See also2-103Handling offsets and Trends in Data2-104When to detrend data2-104Alternatives for Detrending Data in GUi or at theCommand-Line2-105Next Steps After detrending2-107How to Detrend Data Using the Gui2-108How to detrend data at the Command line2-109Detrending Steady-State Dat109cending transient Dat2-109See also2-110Resampling Data2-111What Is resampling?...,,.,,,,,,,,,,,.2-111Resampling data without Aliasing Effects2-112See also2-116Resampling data Using the GUi.,,,,2-117Resampling Data at the Command line2-118Filtering Data2-120Supported Filters2-120Choosing to Prefilter Your Data2-120See also2-121How to Filter Data Using the gui2-122Filtering Time-Domain Data in the GuI........ 2-122Content
    2020-12-11下载
    积分:1
  • 线性判别分析matlab代码及pdf 讲解
    这是线性判别分析的一个matlab code,有具体实例的运行结果,还有关于LDA 算法的详细讲解,通俗易懂,希望对大家有用.
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 104617会员总数
  • 12今日下载