晶圆缺陷检测与分类的卷积神经网络
晶圆缺陷检测与分类的卷积神经网络;针对晶圆检验时扫描电镜图像的缺陷检测和缺陷分类两问题,采用了“ ZFNet”的卷积神经网络来分类晶圆缺陷,并基于该分类器实现了一种“基于块的卷积神经网络”缺陷检测算法。为了提高准确率和加快速度,又改动“更快的区域卷积神经网络”实现了另一种检测算法。第卷第期邡鑫,史峥:晶圆缺陌检测与分类的卷积神经网络ZENet classifierDarker ImIn.ril” HumpBitel检测算法示意图在训练检测器时,数据集是检测器原始尺寸的图像,且包含标记好的缺陷区域和类型。我们结构通过·系列数据扩张操作,得到组数据,随机选取相比于检测算法主作为训练集,作为测试集。要从以下三方面进行了针对性的改进算法中需要优化的参数有滑动窗口尺寸滑()针对重复计算卷积的缺点,采用先动步幅、概率阙值、面积阙值,由于无法求出统一计算特征图,再按)进行映射各参数与检测结果的明确关系式,所以采用遍历法优化参截取的办法。如图,先通过卷积网络(数。因为检测到的缺陷尽量正确和尽量检测到所有缺陷是)对输入图像计算得到其特征图,因为在输入图像矛盾的,故以精确率和召回率的调和平均值作为优上的都能映射到特征图上,所以从输入图像上按化目标,也可根据实际需要调整两者权重满足不同侧重。割取图像进行卷积运算可以替代为直接从特征图上按测试结果映射后的范围割取,从而避免多次重复计算卷积。由于用训练好的检测模型对测试集检的大小形状不·,而全连接层的神经元连接数是固定的,测,计算模式下每张图大概耗时如果检测到的缺所以对割取得到的子特征图,通过层次采样到统陷与标准答案的且类型相同,则判为正确,否尺寸以连接到全连接层。则判为错误。得到结果如表,计算得:laut Image精确率Feature Map召回率ROI其屮正确缺陷的平均表检测器测试结果数量正确错误network有缺陷(正类)图映射示意图从检测结果来看该算法基本实现∫对图像上晶圆()针对滑动窗口尺寸单·的缺点,增缺陷的检测和分类,但是值较低,缺陷检测位置不加了滑动窗口的尺寸类型,并且增加由一个全卷积网络准确,检测耗时较长,分析其原囚如下)组成的()检测出错的数据中,缺陷较大的类型易判断错,)来预判断是否有缺陷。本文采用面积缺陷较小的容易被漏掉,说明只使用一种尺寸的滑动框很分别为,长宽比分别为、共难适应尺寸变化范围较大的缺陷种尺寸的滑动窗口,依次计算其中有缺陷的概率,再从中)滑动框步幅减小则算法耗时平方倍增加,而步幅筛选出一定数量最有可能有缺陷的区域,进行非极大值抑过长造成缺陷概率分布图分辨率较差,从而检测到缺陷位制(),最后得到一定数置准确度较差量的候选区域。()相邻滑动框都有大量重叠,所以每个区域都被多()针对缺陷检测位置准确度差的缺点,次重复送入计算卷积,导致算法耗吋较长。在全连接层后连接一个边界回归层在与上述检测算法相似的图像目标检测领域,近来出用来修正缺陷位置,该回归层与分类层并列。现的很好的克服了以上缺点并取得了很好的针对本文的缺陷检测问题,直接套用标准效果,所以下面介绍如何通过改动实现品圆并不能解决问题。因为判断晶圆的缺陷类型通常需缺陷的检测与分类。要结合缺陷区域周围的图形信息,而在预判断是否有C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct计算机工程年月日缺陷吋还进行了边界回归。虽然更加准确的给出缺陷的位()将原尺寸为的图像调整为置,但送入检测网络的特征儿乎不包含缺陷周围图肜信息,使得滑动窗口尺寸能够适应缺陷大小的变化范围,也可以导致缺陷分类不准。故木文对标准徹了一些根据实际情况来具体调整。改动:得到缺陷检测算法如图,卷积网络(()将改为只判断滑动窗口内是否有缺陷,而,)将输入图僚转换成多种特征图;根据不进行边界回归,也就是只计算所有滑动窗口有缺陷的概特征图从滑动窗口中选出最有可能存在缺陷的率,选取可能性最大的个,做非极大值抑制,再选出层根据特征图中抽取出对应特征组成特可能性最大的个进行检测。征向量;检测网络()根据特征向()将卷积层的尺寸加大为,加大感受野量判断缺陷类型,并进行边界回归;最后通过和概率),从而在判断滑动框內是否有缺陷吋能参阈值对候选缺陷进行过滤即可得到最终缺陷。考更多的周围信息。Detection NetworkonFolutionnl actorSoftmaxRuI Puling liver,e Prop卟 edMS+PrubilitessionInput Image 1024*1024Fully 10 dyercrectCcrvchrionalLaver size 747图检测算法示意图模型训练和平均值作为优化目标,并且使用相同的训练集和图中的检测算法也是基于架构实现,因为卷测试集积网络提取的特征类型对相似普遍有效,故其卷积网络的测试结果参数是直接迁移第章分类器的卷积层参数。但是用训练好的检测模型对测试集检测,和的参数则需要通过方法进行训练,标准计算模式下每张图大概耗时,采用相同判定标准,提供了分开和联合两种训练方式。为了节约得到检测结果如表(其中负类总数与表中总数不同是因时间,本文采用联合训练方式,并结合缺陷检测问题的实为同一张图屮可能检测到多个缺陷),计算得际情况调整超参数精确率在训练时,对每张输入图像,要计算的滑动窗口召回率数量庞大(种尺寸的滑动窗口,滑动步幅)。所以从中随机抽取个作为训练集,其中正例其中正确缺陷的平均负例,且正例占比不超过。分类器采用表检测器测试结果损失函数数量正确错误在训练时,设置提供个,从中随有缺陷(正类)机选取个作为训练集,其屮正例无缺陷(负类)负例,且正例占比不超过。另外设置学从结果来看该算法各方面都优于检测算习率分类器采用损失函数,而边界回法和值更高说明检测检测缺陷类型正确归采用函数。且位置准确,而且速度也大大提高(检测一张图像耗时从为了与检测算法对比,在最后通过遍历法缩小到)。如图为检测缺陷示例,共中标注了缺陷优化和概率阈值时,同样以精确率和召回率的调位置、类型和对应概率C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct邡鑫,史峥:晶圆缺陷检测与分类的卷积神经网络I I图检测结果示例图结束语而对图像上的缺陷检测和缺陷分类这两个问题,本文提出的改动后的检测算法能够精准、快速地从图像中检测出缺陷并同吋进行分类。得益于卷积神经网络良好的特征学习能力,该检测算法能够根据标记好缺陷位置和类型的数据自动学习特征,从而尽量避免人工千预,使算法具有较强的适应能力。参考文献徐姗姗刘应安徐昇基于卷积神经网络的木材缺陷识别山东大学学报工学版刘云杨建滨王传旭基于卷积神经网络的苹果缺陷检测算法电子测量技术江帆刘辉王彬等基于模型的图像识别计算机工程C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct
- 2021-05-06下载
- 积分:1
时隙 Aloha 及伪贝叶斯算法性能仿真
设一个时隙 Aloha 系统的时隙长度为 1,所有节点的数据包均等长且等于时隙长度。网络中的节点数为 m,各节点数据包以泊松过程到达。 1 假定每个节点的数据包到达强度均为 λ /m,在不同的 λ 下,仿真时隙Aloha 数据包传送的成功概率,绘制呼入强度和成功概率的曲线,和理论结果进行对照。 仿真思路: 1) 生成一个二项分布列来模拟数据包的到达过程 2) 因为数据包以泊松过程到达,所以二项分布的 P 定为(1- m eλ− ) 3) 对生成的数列求和,只有当其和恰等于 1 即有且仅有一个数据包到达时,才可以成功发送,这时成功个数计数+1 4) 2.选取合理的引,,qa,m,采用延时的下界,仿真时隙Aoha系统数据传输过程,统计在不冋同η下,到达率及离开率,绘制它们随n的分布情况,和理论值进行对照qn:等待重传的节点在每一时隙内重传数据包的概率qa:每个发送节点有新数据包到达的概率m:系统内总的节点数n:每个时隙开始时等待重传的节点数仿真思路:1)用二项分布模拟数据包的到达及发送过程2)生成两个数列:一个表示等待重传的节点以q,重传的情况;一个表示新到达的数据包情况因为题日说明采用延时的下界,即不缓冲,每个节点最多容纳一个数据包,有包则扔。所以第一个数列前n项令为1,后一个前n项令为0,之后两个数列可以进行简单加和3)发送成功率:对两个数列相加之后求和,如果sum等于1,说明此时隙内到达和发送的总数为1,只有在这种情况下发送才有可能成功,计数加1到达率:在每N次实验中,对“表示到达的数列”求和,统计4)对n做循环以表示到达率和离开率随n的变化情况;每个n下进行N次实验,数理统计3/8仿真结果0.40.35*0.30.250.20.150.10.0550607080901001/曲线为理论曲线:Ps=G exp(-G)and G=(m-n)a+n gr2/仿真值基木与理论曲线吻合在仿真的过程中,合理选取个参数值对能否得到埋想的曲线起了重要的作用下图分别为qr=0.02,0.05,0.08s时的曲线。可以看到,随着qr的增加,曲线向左移,导致第二个交叉点也左移,这个时候重传的延时将会减小。反之,曲线右移。当q,增加到一定程度的时候,系统只有一个稳定点了。4/840.350.30.20.1501020304050607080901c03仿真时隙Aoha系统下的伪贝叶斯算法,通过仿真结果眼正在n的估计误差较大的情况下的收敛特性及到达率小于1/e下的稳定性。仿真思路:1、伪贝叶斯算法的主要思路是对新数据包和积压节点等同对待:当有新数据包到达的时候,暂不发送,下一时刻与以前的积压节点一起以4r发送。所以修改2中的仿真模型:1)依旧是一列表到达,一列表上一时隙的积压节点2)对两列加和,统计其中为1的个数,设为d3)以qr为概率,d为长度,生成又一个二项分布数列 depart,表示发送的情况4)对depa求和,如果 depart的和为一,说明恰发送成功,n(k+1)=d-1,否则n(k+1)=n(k)5)循环,进行数理统计2、仿真收敛特性和稳定特性哩论值:根据给岀的伪贝叶斯算法的具体步骤,由给出的n(k),不断模拟生成n(k+1)5/8仿真值:由仿真模型及给出的n(k),生成n(k+1)观察两种方式得到曲线的走向3、给出不同的值,观察n(k+1)随时间变化的情况判断标准如果要保持系统的稳定,至少n(k+1)应该保持在一个恒定的状态,或者逐渐趋于零。如果n(k+1)不断增加,则系统最终将趋于饱和,无法再接纳新的数据包,此时系统不稳定。仿真结果:1、验证在n的佔计误差较大的情况下的收敛特性:1)n=170;估计nt=20;m=100:20.2:N=100016030040050060070080g001CC08002)n=50;估计nt=180;m=1000=-1-02:N=80结果说明可以看出,当估计值与系统本身的积压数据包数有很大差别的时候,无论是大还是小,最终都可以趋于实际值,从而收敛特性得到验证。1)同时可以看到,改变的值:当λ增大的时候,收敛地更快;2)当n不变的时候,改变m的值,如果n/m变大,那么发生碰撞的几率就变大,也会导致估计的n值更快地趋向理论n值这些都是于课堂分析的理论情况相吻合的6/82、验证系统的稳定性下图分别为A=02:=10.1:=1:4=1+02:=0.3时候的情况。可以看到,当λ
- 2020-12-09下载
- 积分:1