登录
首页 » Others » 优化标准测试函数及MATLAB代码

优化标准测试函数及MATLAB代码

于 2020-12-05 发布
0 217
下载积分: 1 下载次数: 3

代码说明:

目前常用的优化标准测试函数及MATLAB代码

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 图像Gauss,Laplacian金字塔+图像融合
    共附带了5个m文件,其中pyr_reduce.m和pyr_expand.m分别实现了一次滤波+降采样和滤波+升采样操作;genPyr.m调用这两者,实现高斯和拉普拉斯金字塔的生成;pyrReconstruct.m则实现了由金字塔进行图像重构的操作。最后,pyrBlend.m进行了图像融合的实验。还有三张试验图片
    2020-12-02下载
    积分:1
  • python的svm分类器
    基于python的SVM分类算法,可以直接使用,包含源代码,支持参数设定
    2020-12-03下载
    积分:1
  • windows系统苹方全套字体包(亲测可用)
    苹方字体下载和安装使用说明:1、 第一字体网提供的苹方字体下载之后均为通用的TTF字体文件格式,仅供学习之用,由于字库的设计需要付出大量的心血,若您需要将其用作商业用途,我们强烈建议您向原作者联系购买。2、 在不同操作系统上使用和安装苹方字体的方法:Windows系统的通用方法:打开“控制面板”,找到“外观”-“字体”,然后把下载的TTF文件复制粘贴到这里即可,然后重新打开Word或PS就可以看到了。Win7/ Win8系统: 鼠标右键单击已下载的苹方字体文件,在弹出菜单中选择 "Install" 即可完成。Windows XP系统: 除了上面的通用方法,您也可以把文件复制到文件夹“
    2021-05-06下载
    积分:1
  • 基于SVPWM控制的三相光伏并网逆变器模块-ldnibianqi.mdl
    【实例简介】基于SVPWM控制的三相光伏并网逆变器模块-ldnibianqi.mdl 做毕业设计时看了好几篇相关文献搭建的,可用。拿出来分享下。
    2021-11-17 00:32:02下载
    积分:1
  • 集成电力电子变换器及数字控制
    集成电力电子变换器及数字控制,这本书的电子版 ,清晰。内容涉及直流变换器及其数字控制方面知识
    2020-12-01下载
    积分:1
  • matlab时频分析工具箱最新版
    matlab时频分析工具箱最新版 也是最终版,官方不会更新了。08年的时候就到了tftb-0.2,一直到现在。
    2020-12-05下载
    积分:1
  • 星图识别各种序(m和c).zip
    星图识别,各种程序,matlab和C语言,有很好的的借鉴意义
    2020-12-03下载
    积分:1
  • 偏振信息计算
    利用获得的三个不同角度的偏振图像用公式计算求得偏振度图像、偏振角图像及斯托克斯各分量图像。
    2020-12-11下载
    积分:1
  • 平面变压器3D仿真资料
    采用COMSOL软件,对平面变压器的仿真过程进行叙述,让大家了解平面变压器的仿真流程,是个很好的指导教材Solved with COMSOL Multiphysics 5.0Results and discussionThe magnetostatic analysis yields an inductance of 0. 1l mH and a dc resistance of0. 29 mQ2. Figure 2 shows the magnetic flux density norm and the electric potentialdistributionvolume: Coil potentiaL()Volume: Magnetic flux density norm (t▲0.07▲2.88×10-42.51.50.03050.01V656×107v0igure 2: Magnetic flux density norm and electric potential distribution for themagnetostatic analysisIn the static (DC) limit, the potential drop along the winding is purely resistive andcould in principle be computed separately and before the magnetic flux density iscomputed. When increasing the frequency, inductive effects start to limit the currentand skin effect makes it increasingly difficult to resolve the current distribution in thewinding. At sufficiently high frequency, the current is mainly flowing in a thin layernear the conductor surface. When increasing the frequency further. capacitive effectscome into play and current is flowing across the winding as displacement currentdensity. When going through the resonance frequency, the device goes from behavingas an inductor to become predominantly capacitive. At the self resonance, the resistivelosses peak due to the large internal currents Figure 4 shows the surface current3 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0distribution atl MHz. Typical for high frequency the currents are displaced towardsthe edges of the conductor.freq(1)=1.0000E6_Surfaee: Surface-current density norm (A/)▲18618Q16010¥1.02Figure 3: Surface current density at I MHz (below the resonance frequency)Figure 4 shows how the resistive part of the coil impedance peaks at the resonancefrequency near 6MHz whereas Figure 5 shows how the reactive part of the coiimpedance changes sign and goes from inductive to capacitive when passing throughthe resonance4 MODELING OFA3DINDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)d port impedance7.5G6.583275655545352510.10.20.30.40.509igure 4: Real part of the electric potential distribution5 MODELING OF A INDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)35000Lumped port impedance200001000050000500010000-1500020000250000.10.20.30.40.50.60.70.809Figure 5: The reactive part of the coil impedance changes sign hen passing through theresonance frequency, going from inductive to capacitiveModel library path: ACDC_Module/Inductive_ Devices_and_coils/inductor 3dFrom the file menu. choose newNEWI In the new window click model wizardMODEL WIZARDI In the model wizard window click 3D2 In the Select physics tree, select AC/DC> Magnetic Fields(mf)3 Click Add4 Click StudyMODELING OF A3D NDUCTORSolved with COMSOL Multiphysics 5.05 In the Select study tree, select Preset Studies>StationaryGEOMETRYThe main geometry is imported from file. Air domains are typically not part of a CaDgeometry so they usually have to be added later. For convenience three additionaldomains have been defined in the CAd file. These are used to define a narrow feed gapwhere an excitation can be appliedport l(impl)I On the model toolbar, click Import2 In the Settings window for Import, locate the Import section3 Click Browse4 Browse to the models model library folder and double-click the filenductor 3d. mphbinSphere /(sphl)I On the Geometry toolbar, click Sphere2 In the Settings window for Sphere, locate the Size section3 In the Radius text field, type 0.2ick to expand the Layers section. In the table, enter the following settingsLayer nameThickness(m)ayer0.055 Click the Build All Objects buttonForm Union(fin)i On the Geometry toolbar, click Build AllClick the Zoom Extents button on the Graphics toolbar7 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.03 Click the Wireframe Rendering button on the Graphics toolbarThe geometry should now look as in the figure below0.1-0.10.20.0.0.1y0.0.2Next, define selections to be used when setting up materials and physics Start bdefining the domain group for the inductor winding and continue by adding otheruseful selectionsDEFINITIONSExplicitI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Winding3 Select Domains 7,8 and 14 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Gap3 Select domain 9 onlI On the Definitions toolbar, click Explicit8 MODELING OF A3DINDUCTORSolved with COMSOL Multiphysics 5.02 In the Settings window for Explicit, in the Label text field, type core3 Select Domain 6 onlyExplicit 4I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type InfiniteElements3 Select Domains 1-4 and 10-13 onlyExplicit 5I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conducting3 Select Domains 1-6 and 9-13 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conductingwithout Ie3 Select Domains 5, 6, and 9 only.Infinite Element Domain /(iel)Use infinite elements to emulate an infinite open space surrounding the inductorI On the definitions toolbar click Infinite element domain2 In the Settings window for Infinite Element Domain, locate the Domain Selectionsection3 From the Selection list. choose Infinite Elements4 Locate the Geometry section From the Type list, choose SphericalNext define the material settingsADD MATERIALI On the Model toolbar, click Add Material to open the add Material window2 Go to the Add material window3 In the tree, select AC/DC>Copper.4 Click Add to Component in the window toolbar9 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0MATERIALSCopper(mat/)I In the Model Builder window, under Component I(comp l)>Materials click Copper(matD)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose windingADD MATERIALI Go to the Add Material window2 In the tree. select built-In>Air3 Click Add to Component in the window toolbarMATERIALSAir(mat2I In the Model Builder window, under Component I(comp l)>Materials click Air(mat2)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose Non-conductingThe core material is not part of the material library so it is entered as a user-definedmateriaMaterial 3(mat3)I In the Model Builder window, right-click Materials and choose Blank Material2 In the Settings window for Material, in the Label text field, type Core3 Locate the geometric Entity Selection section4 From the selection list choose Core5 Locate the Material Contents section. In the table, enter the following settingsPropertName Value Unit Property groupElectrical conductivity sigma0S/IBasicRelative permittivity epsilonrBasicRelative permeability mur1e3Basic6 On the model toolbar. click Add Material to close the Add Material windowMAGNETIC FIELDS (MF)Select Domains 1-8 and 10-14 only0MODELING OF A 3D INDUCTOR
    2020-12-10下载
    积分:1
  • 波形发生器proteus仿真
    波形发生器程序,产生三角波方波,正弦波,可以学习proteus仿真,包含c文件及protues文件
    2020-11-29下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载