登录
首页 » Others » PSCAD下含光伏风电的微网模型

PSCAD下含光伏风电的微网模型

于 2020-12-05 发布
0 325
下载积分: 1 下载次数: 11

代码说明:

一个PSCAD环境下的微网模型,含光伏、风电、同步电机和负荷,供参考一个PSCAD环境下的微网模型,含光伏、风电、同步电机和负荷,供参考一个PSCAD环境下的微网模型,含光伏、风电、同步电机和负荷,供参考

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • SVM训练过与步骤
    介绍用SVM训练的过程、步骤,对于初学者来说,有一个感性认识和思路。如果直接去看SVM,怎么看都是一头雾水
    2020-12-05下载
    积分:1
  • 离散粒子群算法(DPSO)Matlab代码
    离散粒子群算法的Matlab实现,欢迎大家下载学习,一起进行改善。
    2020-11-28下载
    积分:1
  • 扩频通信系统的FPGA设计.pdf
    扩频通信系统的FPGA设计.pdf
    2021-05-06下载
    积分:1
  • MPPT光伏逆变系统的MATLAB仿真
    对三相光伏并网逆变系统的最大功率点跟踪控制和并网逆变电流控制进行研究。建立了光伏电池的数学模型,并对两级式并网逆变拓扑结构实现MPPT控制进行细致的研究分析,在Boost电路下进行了最大功率点跟踪控制的仿真。网侧逆变器的控制策略是整个控制系统的关键部分。文中主要介绍了MPPT控制策略的基本原理,详细阐述了在仿真软件MATLAB/simulink环境下实现扰动观察MPPT控制方法,最后给出了仿真实验结果。
    2020-11-27下载
    积分:1
  • 风电功率预测模型的比较
    根据百度百科,“风”是“跟地面大致平行的空气流动,是由于冷热气压分布不均匀而产生的空气流动现象”。 风能是一种可再生、清洁的能源,风力发电是最具大规模开发技术经济条件的非水电再生能源。现今风力发电主要利用的是近地风能。
    2020-12-04下载
    积分:1
  • 神策数据-大数据分析
    大数据解决方案,用于网站、非BI的大数据分析解决方案。前言:大数据时代来临大数据时代已经到来,不同于以往的概念和趋势层面,行业领导者们(尤其是互联网、金融、零售、企业级服务等行业)在这一领域不断锐意进取,积极应用海量数据的采集和分析,实现端到端的深度洞察,调整战略和业务决策,改善核心业务运营,构建差异化竞争优势,向着以数据驱动为核心的方向前进Gartner预测,到2020年,大数据将成为主流的嵌入式技术,并被视为常规产品的一部分。麦肯锡在对200多家不同类型公司的实际调研中发现,无论B2B还是B2C公司都在通过数据驱动业务增长,其中B2B领域中,在数据驱动下的B2B领先企业的收入增长能力是普通企业的5倍、盈利能力高8倍、股东整体回报率高2倍。数据驱动能力正在成为企业重要变革和核心竞争力。2017年,随着机器学习、人工智能、物联网等技术的应用深化,必将推动大数据领域新一轮爆发式发展。走在前沿的领导企业和行业新锐,将进一步聚焦如何高效利用企业内外部产生的海量数据,拒绝“拍脑袋”,一切用数据说话!前25%的B2B领先企业其他的B2B企业5X~8X2X4.3%13.5%18.1%10.3%0.8%1.8%业绩增长利润增长股东回报率数据来源: McKinsey Digital Quotient, Capital IG目录公司简介01什么是数据驱动-02什么是用户行为分析03企业数据分析面临的挑战04神策分析(SA)是什么05神策分析(SA)的产品特点06产品架构图07案例精选互联网金融08消费电子16移动出行20企业服务24电子商务32传媒娱乐36医疗健康52公司简介Helo,Doer!你好,先行者!“数据源乃大数据之根基。管理数据源如扎根土壤,根基稳固方能避免“空中楼阁”。这是我在大数据行业工作近十年的最大心得,也是神策数据服务企业的核心理念驱动决策并未充分发挥大数据的全部价值,让产品智能化更代表行业发展方向。目前大部分数据分析产品可满足企业在决策层面的分析需求。在未来,随着大数据在行业应用的深化,必将更加依赖强健的数据仓库和灵活的平台开发能力,通过基础数据叠加算法模型,从而驱动产品智能化。”一神策数据创始人&CEO桑文锋谈数据驱动两点心得我们是谁神策数据( Sensors Data),隶属于神策网络科技(北京)有限公司,是一家专业的大数据分析服务公司,致力于帮助客户实现数据驱动●我们做什么神策分析( Sensors Analytics,以下简称SA),是针对企业级客户推出的深度用户行为分析产品,支持私有化部署、基础数据采集与建模、PaS平台深度开发,提供大数据相关咨询服务和完整的行业解决方案。我们的团队团队核心成员—一桑文锋(创始人&CE),曹犟(联合创始人&CTo),刘耀洲(联合创始人&C○O),付力力(联合创始人&首席架构师)均来自百度大数据部,从零构建了百度的日志分析大数据处理平台,在大数据分析领域有10年积累,实战经验丰富,数据分析技术领先。●资本的支持公司成立以来,获得线性资本、明势资本、薛蛮子的天使轮投资,红杉资本、DCM分别领衔的A、B两轮持续投资。●我们的服务神策数据积累了聚美优品、广发证券、融360、秒拍、ofo共享单车、百联集团等300余家付费企业用户的服务和客户成功经验,为客户提供全面的指标梳理、数据模型搭建等专业的咨询、实施和技术支持服务。01什么是数据驱动定义:通过数据采集、数据建模、数据分析,帮助企业高效获取数据并进行多维度、海量、实时的数据分析,从而驱动决策和产品智能化。驱动决策●运营监控拉新:吸引更多的新用户,不只是关心用户触达,还要关心用户激活。留存:让已有用户重复地使用产品,留存是节流,好的留存才让拉新有意义。变现:一个不能变现的产品不是好产品●产品改进构建:开发新功能。测量:对新功能的表现进行数据测量。学习:通过分析得出结论,对新功能进行调整,或转化为新功能。●商业决策客户分布,画像描述,指导商业扩张战,收购并购等战略决策。驱动产品智能机器学习、人工智能、物联网等新技术的最佳实践,必须建立在企业对大数据的应用能力之上,唯有打好数据基础并充分利用,才能实现产品智能化。什么是用户行为分析定义:通过获取用户行为数据,进行多维度、精细化的统计分析,从而还原用户使用场景。价值:用户行为分析是企业实现数据驱动的前提,丰富的用户行为数据为企业的运营改进、产品优化和商业决策提供基础。做好用户行为分析的两大关键因素数据采集要大、全、细、时大:宏观的大,而非数据量的大。全:多种数据源(客户端、服务器、数据库、历史数据导入)。细:多种数据维度、指标、属性。时:时效性——秒级处理,实时更新。有效的用户行为事件模型—事件( Event)+用户(User)规范并结构化用户行为。Who:参与此事件的用户事件 EventWhen:事件发生的实际时间Where:事件发生的地点事件模型How:用户进行事件的方式What:描述用户所做的事件的具体内容记录和收集用户的长期属性( User Profile)用户User通过ID与相关的 Event关联0203企业数据分析面临的挑战我国大多数企业的数据化建设道路仍刚刚起步,呈现以下特点企业内外部数据爆发式增长,企业对大数据价值认知程度不断提升数据采集缺失或埋点无序混乱,数据分析的工具运用能力、行业经验有限。Q数据安全问题成为企业数字化进程的最大顾虑。在实际的业务应用中,数据分析方面的常见问题¤目拍脑袋:无数据分析支撑,依靠“拍脑袋”决策。分析浅:有数据仪表盘,但统计内容泛泛,难以深挖真实原因。效率低:多业务线的数据分析需求旺盛,工程师团队手工“跑”表,效率低下,错过业务最佳决策时机不匹配:工程师从系统导出的报表与业务的需求不匹配,造成“鸡同鸭讲”数据孤岛:CRM、ERP等业务系统数据无法打通,且跨部门、多业务线数据完全独立,无法全局分析。神策分析(SA是什么神策分析是针对企业级客户推岀的深度用户行为分析产品,支持私有化部署、基础数据采集与建模、PaS平台深度开发,提供大数据相关咨询服务和完整的行业解决方案。无论是新兴互联网公司,还是正在进行数字化转型的企业,神策分析(SA)帮助您勾勒精准用户画像、有效评估营销效果、分析运营活动、优化产品体验,真正实现数据驱动。勾勒精准用户画像有效评估营销效果分析运营活动优化产品体验0405神策分析(SA)的产品特点可私有化部署基础数据采集与建模不仅提供Sas公有云部署,多种埋点方式支持客户端、服更支持私有化部署模式,打造务器日志、业务数据库、第三企业专属的数据平台,消除数方服务、历史数据导入等全端据安全顾虑。数据采集,无死角的数据采集是一切分析的前提。用户分群,精益分析多维度分析通过用户分群,进行目标市场轻松上手事件、漏斗、留存的细分,实现精细化和差异化访问等分析模型,灵活组合、用户运营。秒级响应,探索不同业务中的关键行为,洞察指标背后掩藏的问题。PaaS平台深度开发行业方案完全开放的数据接入,实时访为电商、互联网金融、企业服问数据,无缝对接内部业务系务、视频直播、游戏、在线教666统,满足灵活多变的深度分析育等行业打造了专业的用户行需求。为解决方案,快速开启您的数据驱动之旅。
    2020-12-03下载
    积分:1
  • 【12套简历+封面+自荐信】
    【12套简历+封面+自荐信】
    2021-05-06下载
    积分:1
  • 数电multisim万年历
    数电课程设计万年历,包含年、月、日、周、时、分、秒,闰年判断,大小月区分,经由老师验收
    2021-05-06下载
    积分:1
  • 经典的ICP点云拼接配准算法,matlab实现,带例,附带RMS误差分析
    自己实现的经典ICP算法,采用PCA作了粗拼接,然后使用K-d树算法加速选取对应点,使用bunny数据进行了拼接实验,并计算了其RMS误差。经典ICP算法中不包含筛选删除误匹配点对的步骤,因此精度较低。
    2021-05-07下载
    积分:1
  • 电力系统风险评估--模型、方法和应用
    费了九牛二虎之力终于搞到这本书了,清晰版,非扫描版,enjoy
    2020-12-10下载
    积分:1
  • 696518资源总数
  • 105678会员总数
  • 22今日下载