登录
首页 » Others » QFT-Matlab设计工具箱

QFT-Matlab设计工具箱

于 2020-12-03 发布
0 182
下载积分: 1 下载次数: 1

代码说明:

是Mario Garcia-Sanz, Augusto Mauch, Christian Philippe开发的QFT-Matlab工具箱,里面附有Manual。可以使用。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ANUSPLIN软件
    ANUSPLIN软件用于空间插值,插值精度比较高。
    2020-12-08下载
    积分:1
  • SVPWM逆变器仿真
    svpwm逆变研究 基于两电平逆变器的开环SVPWM的仿真搭建,
    2020-12-02下载
    积分:1
  • 多尺度高斯模型的图像色彩增强
    多尺度高斯模型的图像色彩增强Matlab代买,对于大雾天气下可以实现透雾。并且对于阴影下可以使得图像细节也变得清晰,效果挺不错,不过对于视频序列效率不足。
    2020-12-07下载
    积分:1
  • 傅里叶变换和傅里叶逆变换的C++代码,亲测
    傅里叶变换和傅里叶逆变换的C++代码,亲测,有详细的解释。有问题可以留言。
    2021-05-06下载
    积分:1
  • vasp.5.4.1.05Feb16.tar.gz
    VASP全称Vienna Ab-initio Simulation PackageVASP是维也纳大学Hafner小组开发的进行电子结构计算和量子力学-分子动力学模拟软件包。它是目前材料模拟和计算物质科学研究中最流行的商用软件之一。
    2020-11-29下载
    积分:1
  • 卡尔曼滤波
    提供了kf,ekf,ukf的详细推导过程,从标量推导开始,进而转入矢量推导,非常详细卡尔曼滤波器简介(阎泓著第一步、时间更新29第二步、测量更新“““““““+““44““““42924特殊情况.30第一种情况、先验误差极小...-.----130第二种情况、先验误差极大.30第三种情况、测量噪声极大.…31第三章、标量EKF画,通通画4“““““+44=“++“““++4“4“+“4“““-“++323.1非线性状态模型.323.2模型线性化33.2.1过程噪声项的线性化.333.2.2测量噪声项的线性化...11-343.2.3过程和测量噪声项同时线性化…35324过程的线性化…0353.25测量的线性化…363.3EKF滤波器…1373.31应用卡尔曼滤波器.3733,2计算先验均方差373.33计算后验均方差373.3.4计算k值4a“44444“;4444454a44“44444=424444441“如44444;44444“44.45“#4444444a444444443833.5k值为最优时的后验均方差3834算法39第一步、时间更新………9第二步、测量更新393.5EKF的缺陷44“==++++4=++44日+“44=“““+440第四章、矢量EKF4141非线性矢量状态模型4142矢量模型线性化单“““·***“““***“““““***“““***4““-***4““*“→“““*→*-““““““*“““*+4““→*“·““·““““*4242.1矢量泛函的泰勒展开42.2过程噪声项的线性化424.2.3测量噪声项的线性化.→“““#+4+“44“““-4+44→“““4“4+-““+43424过程和测量噪声项同时线性化4442.5过程的线性化4“““4““*“4““*→““*+“4“““““““*4“““4“““++4““44“““4“44““““七426测量的线性化“““““·+““““*““““+“““““““+4“““““““+4“““→·“““+“4543矢量EKF滤波器面面面面46画面和面面,43.1应用矢量卡尔曼滤波器44““++“44“““*44“““++444““4+444“+“44““““+444643.2计算先验均方差4643.3计算后验均方差4““+44““““44““““+→4““““+4““““4“44““““.47434计算k值47435k值为最优时的后验均方差4845算法“““+““““*“““““+…““““*“+44““48第一步、时间更新.…49第3页(共77页)卡尔曼滤波器简介(阎泓著第二步、测量更新““4--““44-4494.4特殊情况.““““4444“画画新通画通49第一种情况、先验误差极小.画画,画画画园画画,画画画面请通.50第二种情况、先验误差极大….----50第三种情况、测量噪声极大44“““+44““=++“44“““+444““4+“44““44+50第五章、标量无迹变换UT5251无迹变换的任务5252真值“““““++“++4“4“““+4“++4“““““+““+“““““525.3无迹测试点1101453.1标量的无迹测试点………154532无迹权重系数翻国口道55533统计性质公式…5554测试点的无迹变换.565.4.1从测试点得到后验期待值.画画通通画画山通画画新56542从测试点得到后验方差“““+4“++“4“++““平““上“““4““平中“+““““平“4+“=575.5讨论品aB444a日日+44日4日日“4日a4日+a日本“日日日和本上日和4日““458第六章矢量无迹变换UT4“““4“44“““4++44“““4+““4+2+“++“4“++4=“++“““2++““““++““4+““““++5961矢量微分回顾5961.1计算真值会用到的恒等式1962矢量无迹变换的任务中本““丰二“中““6063真值6163无迹测试点63.1矢量的无迹测试点画面通自品面画画面自自通国画日画面国通画日通山国国画山山面通画山山丽右日日画画画画画山63632无迹权重系数64633UT变换下的对称性64测试点的无迹变换6564.1几个恒等式…65642从测试点得到后验期待值.…---1----66642从测试点得到后验协方差.6765讨论68第七章、无迹滤波器UKF11116971高维非线性问题.069711标量特例画画画画画画新画画画画画画““*#“““““44“…4“““““4““+““→““““44““47072无迹滤波器面,面面面面面面面“面画70721无迹测试点““*4“““““44““+44““““*44“““++444“““4““+“44“““““722无迹权重系数通画画通画画通通画画通山请画画画画画画出画请画画副。723先验估计画画·画‘画4““+44““““44““““+→4““““+““““+“444““““+472724应用卡尔曼滤波器737.2.5计算后验均方差…737.2.6计算k值…444““+44“““*447473算法75第4页(共77页)卡尔曼滤波器简介(阎泓著第零步、初始化..-75第一步、时间更新175第二步、测量更新画画,画画画园画画,画画画面请通176第5页(共77页)卡尔曼滤波器简介(阎泓著第一章、标量线性系统实际工作中的线性系统很少有标量的,但是标量的卡尔曼滤波器的理论推导比较直观、易于理解,因此作为学习的切入点比较合适首先必须清楚地陈述卡尔曼滤波器要解决的问题。1.1卡尔曼问题在离散时间中,一个标量线性系统的状态演化常常可以表述为下面的随机差分方程式:x=ax,+bu其中t为时间。x,是一个标量随机变量,代表t时刻系统的内禀状态。a和b为常标量。u,为t-1时刻的输入,也是一个标量。111信号流程图上面的(1)式也可以用下面的信号流程图表示u-1)X()Ibax(t-1)直线表示信号的传送,箭头代表传送的方向。流程图中的图标有三种,第一种方框图标代表时间延迟,见下图x(t)TX(t-1)第二种方框图标代表乘法(增益),见下图第6页(共77页)卡尔曼滤波器简介(阎泓著aax第三种圆形图标代表加法(混合),见下图a-b+CbG这些图标可以按照有意义的方式组合起来,描述一个差分方程。必须指出,这些图标并不局限于标量情形,而且适用于矢量情形,譬如x为一个矢量,而a和b可以为矩阵。112加入白噪声假设在这个线性过程中有一个噪声项v鬟x2=ax21+bu-1+W1-1则此方程式可以用下面的信号流程图表示w(t=1)u(-1)中+baX(-1)假定这个噪声ν是一个高斯白噪声,它满足3N(9),(Q20)〈ww)=0(≠)3在本文采用物理学中常用的记号,(x)=E(x)表示x的期待值第7页(共77页)卡尔曼滤波器简介(阎泓著此外假定w与u.没有关联,也即113加入可测量假设系统的状态量x是不可以直接测量的。可以测量的是另外一个量z,称为可测量。可测量z依赖于系统的状态量x和一个激励倍数h,见下式。hx. +v(5)在实际工作中h可能会随着时间而变化,但在这里假定为常数,为常标量。此时流程图如下。wt-1)u(t-1)+b±2(ax(t-1)测量过程本身带有一个噪声ν,影响了测量的准确度。同样我们假定ν是一个白噪声(,R)(R≥0)(")≥=0(s≠)此外假定ν与w和u都没有关联,也即()=v)=0(s1)114卡尔曼问题陈述现在要考虑的是如何从可观测量z;的观测数据中得出x的最优估计值,把噪声w和v尽最大可能过滤出去,把它们的影响减到最小。这就是卡尔曼滤波器要解决的问题。1.2标量卡尔曼滤波器卡尔曼对这个问题的解答就是卡尔曼滤波器。下面的流程图可以分成上下两个部分:上半部分就是问题本身,下半部分就是卡尔曼滤波器。第8页(共77页)卡尔曼滤波器简介(阎泓著u(-1)X()bh+(aX(t-1)bb(()2()+ak文-b)+Residual在图中,z1代表实际测量值,x代表过程的真值。此外在卡尔曼滤波器的流程图中出现了几种新的符号,分别是x代表先验估计( A priori estimate),和E代表后验估计(A posteriori estimate)4.对一个随机变量当前值的先验估计是根据前一个时刻以及更早的历史观测信息所作出的估计:后验估计是根据当前时刻以及更早的历史观测信息所作出的估计。x1的先验估计是由上一个时间点的后验估计值和输入信息给出的,x,=ax+ bur-p卡尔曼使用x的先验估计给出可测量E的(先验估计)预测5,而z,的实际测得值与预测值之间的差称为滤波过程的革新( nnovation)或者残余( Residua,即Residual=(10)本文采取通用的符号,以表示对某变量y在t时刻的后验估计,而表示对y的先验估计。在某些文献中y又记作y(|t-1),又记作y(t|t)5对于z,而言后验估计没有意义。z,是可观测量,在后验时刻已经有实际观测值了。第9页(共77页)卡尔曼滤波器简介(阎泓著残余反映了预测值和实际值之间的差别。残余为零的话,估计值和实际值完全吻合。如果残余很小,表明估计值很好,反之就不好。卡尔曼滤波器可以利用残余的这一信息改善对x,的估计,给出后验估计。也就是x=x:+k(Residual)=*+k(z,-hR-其中的k称作卡尔曼增益或卡尔曼混合系数( Blending factor)现在剩下的问题就是如何找到k的值,使得估计为最优。为此需要定义先验均方差和后验均方差。121最优的k值先验误差和后验误差分别定义为(12)它们的方差就是先验均方差和后验均方差P≡varP, =vale(13)最优的k值是使后验均方差为最小的值,就是下式成立时的k值(14)ak122计算先验均方差先验均方差为≡war(15)因为(2)式及(8)试式x,=ax_+ bu+we=ax+bu可得e:=x-x=ax+bu +w_)-(ax +bur=a(xx_1)+W因此第10页(共77页)
    2020-12-03下载
    积分:1
  • OFDM for Underwater Acoustic Communications
    适合研究水声通信的同学,里面介绍的很详细,希望能对大家有帮助
    2020-12-04下载
    积分:1
  • matlab的交通灯信号识别
    基于matlab的信号灯识别 嗯 有详细代码 可实现
    2020-12-07下载
    积分:1
  • microTCA规范
    PICMG microTCA.0 Specification RC1.0ContentsIntroduction and objectives1.1 Overview1.2 Introduction1.2.1S1.2.2 MicroTCa implementation options1画1-21.2.3 Design goals1-21.2.4 Elements of microtca1-312.5 Theory of operation……着1国面1面日正1-81.3 Micro TCA enclosure types191.3.1 Single Shelf implementation191.3.2 TWo Tier mⅸ ed Width Shelf implementation.…….….….….….….….…....1-101.3.3 Two-Tier fixed Single Width Shelf implementation ....................1-101.3.4 Back-to-Back Shelf implementation.1-101.3.5 Cube Shelf implementation..1-101.3.6 Pico Shelf implementations1111.3.7 Other implementation options1111.4 Application examples1-1114.1 Base station…1-111.42 Router1-121.4.3∨ olP node.….1-121.4.4 Other Telecom Network applicationsE画1-121.4.5 Enterprise applications1-131.4.6 Other applications.....1-131.4.7 Consumer applications1-131.5 Special word usage1-131.6 Conformance1-141.7 Dimensions1-141.8 Regulatory guidelines1-141.9 Reference specifications1.10 MicroTCA0 Specification contributor……1-151-161.11 Name and logo usage1-161.12 Intellectual property……1-171.12.1 Necessary claims1,,面,国国,,国面正∴1-181.12.2 Unnecessary claims11181.12. 3 Third party disclosures1-181.13 Glossary1-192Mechanical2-12.1 Mechanical overview∴………….2-12.1.1 Terminology…2-22.1.2 Typical arrangement examples2-22.2 Dimensions, tolerances, drawing symbols, and nomenclature2-62.3 Mechanical concept2-82.4 AdvancedMC Module orientation, location, and positioning2-1624.1 Module orientation.2-162.4.2 Module positioning, horizontal--mandatory2-172.4.3 Module positioning, vertical-mandatoryU.882-192. 4. 4 Module positioning, depth--mandatory,.42-21PICMG( Micro TCAO Specification Draft RC1. 0, May 26, 2006Do not specify or claim compliance with this Draft Specification2.5 Slot detail dimensions2-222.5.1S|ot..2-222.5.2 Slot configurations, subdividing Slots2-222.5.3 Card guide, Strut, and Card Guide Support Plate(CGSP)…………2232.5.4 Optional Subrack attachment plane2-322.5.5 AdvancedMC Module--optional locking………………………2-342.6 Backplane2-3627 Subrack dimensions2-412.7.1 Mandatory Subrack2-422.8 Shelf2-472.8. 1 Shelf types.2-482.8.2 Shelf width and height…...…2-492.8.3 Shelf depth2-492.8.4 Air filter provision2-502.8.5 ESD wrist strap interface2-502.8.6 Shelf alarm LEDs2-512.9 Cable management2-522. 10 Power entry /Power Module2-562.10.1 Power Module pcb dimensions2-582.10.2 Power Module component height1·面2-632.10.3 Power module face plate2-642.10. 4 Power Module handle/Latch mechanism.2672.10.5 Power module lEDs2-672. 10.6 Power Module EMc gasketing2-672.10.7 Power Module satety covers2-672.10 8 Power module labels2-682.10. 9 Power Module Backplane Connector2-682.11 MCH Module2-692.11.1 Module types2-692.11.2 MCH PCB dimensions.2-702.11.3 MCH Subrack slot details2-772.11. 4 Plug Connector.2-792.11.5 Sequencing and contact area2-812.11.6 MCH positioning2-812. 12 Air flow management面2-822.13 Auxiliary Connector(Zone 2 and zone 3)keying2-832.13.1 Component keep- in height2-842.13.2 Connector keep-in height2-842.133 Keying block…2-852.13.5 AMC0 electrically compatible keying block2.13. 4 Keying block with electrical connections2-86.2-872.14 MicroTCa cube2892.15 MicroTCA Pico2.16 Microtca filler pane的∵面1面面,面2-902-902.17 Cooling Units(CUs)2-912.18 Subrack/Shelf/Cube/Pico performance.2922. 18.1 Load carrying2-922.18.2 Insertion cycles2922.18.3ESD2-922.18.4EMC2-93PICMG MicroTCA. 0 Specification Draft RC1.O, May 26, 2006Do not specify or claim compliance with this Draft Specification2. 18.5 Safety2-932.18.6 Physical Slot and Tier numbering2932.19 Subrack/Shelf environmental2-962.19. 1 Subrack shock and vibration2-962.19.2 Earthquake.........2-962.19.3 Flammability2-962.19.4 Atmospheric2-962. 19.5 Thermal2-972.19.6 Acoustic∴…………………2972.19.7 Surface temperatures2-972.20 References2-973 Hardware platform management3-13.1 Overview3.1.1 Micro Tca Carrier model3-13.1.3 Relationship with IPMI, AdvancedMC, and AdvancedTCA.3.1.2 MicroTCA management architecture3-23-73.1.4 Key differences from PICMG 3.0 and AMC.0 specifications..........3-73.1.5 PICMG properties and FRU Device ID assignments3-93.2 Management-related interconnects3-113.2.1 AdvancedMc interconnects3-113.2.2 Power Module and Cooling Unit interconnects3.2.3 Guidelines for OEM Module interconnects and management3-133-143.2.4 Carrier FRU Information device requirements.3-153.25 Microtca carrier interconnects3-193.3 Carrier Manager.…….…..…...…3-203.3.1 MCH Face Plate indicators3-223.3.2 Payload Interface3-223.3.3 Carrier Manager IP address3-223.3.4 IPM event support∴3-243.3.5 Redundant MCH operation3-253.3.6 Addressing3-263.3.7 Carrier number3-293.3.8 Location information34 Shelf Manager…3-383. 4.1 Shelf Manager configuration options383.4.2 Differences from the AdvancedTca shelf Manager3-403.4.3 Shelf-Carrier Manager Interface翻套国画1面,国面,1面D国画面国3-423.4.4 Shelf Manager IP addre3-433.5 MCMC requirements3453.6 EMMC requirements3-463.7 Operational state management3-483.7.1 Carrier Manager start up……….….….….………..……3483.7.2 Shelf Manager actions on Carrier detection3-483.7.3 Normal Shelf operation1B面面国B3-483.7.4 Abnormal situation handling3-4938 Power management.……3-493.8.1 Power clapping国面3-503.8.2 Micro T CA Carrier Power Management records.3-513.8.3 Early power management356PICMG( Micro TCAO Specification Draft RC1. 0, May 26, 2006Do not specify or claim compliance with this Draft Specification3.8.4 Normal power management.3-573.8.5 Power management commands and sensors3-593.8.6 Abnormal power condition handling3-673.9 Cooling management3-693.9.1 Fan geography.…3-703.9.2 Cooling control…3-713.9.3 Normal cooling operation3-723.9.4 Abnormal cooling operation3-733.9.5 Fan tachometer sensors3-733.9.6 Temperature sensors翻画1国翻B1B…3-733.10 Electronic Keying3-743.10.1 Micro TCA Carrier point-to-point connectivity information3-753.10.2 Module point-to-point connectivity information.3-773.10.3 AMC Port state commands3-783.10.4 Clock b- Keying……3-783.11 Telco alarm management3-73. 12 System Event log…………3-863.13 Sensor management3-863.13.1 Guidelines and requirements for fru sensor events3-863.13.2 MCMC SDR requirements.3-873.13.3 EMMC SDR requirements3-883.13.4 Carrier Manager SDR requirements3-883.14 fru Information.3-913. 14.1 EMMC FRU Information3-913. 14.2 MCMC FRU Information3-913.143 Carrier FRu Information3-923. 14.4 Shelf fru information面国面国面3-923.15 PMI message bridging……….3-933.15.1 Message bridging process3-933.16 PMI functions and command3-943. 16.1 Required IPMI functions..3-953.16.2 Command assignments3-973.17 FRU records, sensors and entity Ids∴3-1084 Power…4-14.1 Overview4-14.2 Loads on the Power Subsystem4-24.2.1 Microtca carrier hub(MCH),………,………………………24-24.2.2 Cooling Units4-74.2.3 Advanced mezzanine cards4-104.3 Power architecture4-134.3.1 Basic functionality4-134.3.2 Partitioning of the Power Subsystem:.::a:.4-154.3.3 Power sources4-154.3. 4 Power Subsystem redundancy4-164.3.5 System Grounding considerations4-214.3.6 Power distribution and backplane considerations4-234.4 Control and monitoring of the Power Subsystem4-2444.1 PM-EMMCs4-244.4.2 Geographic Address4-24PICMG MicroTCA. 0 Specification Draft RC1.O, May 26, 2006Do not specify or claim compliance with this Draft Specification4.4.3|PMB-04-2444.4Ps1[S|o#4-254.4.5EN[Slof]#,…4-2544.6 PWRON_[Sot]…4-254.4.7PSPM#4-2644.8 PM-EMMC watchdog timer……4264.4.9 Power Module oK4-2744.10 Power module reset4-274.4.11 System power-up4-274.4.12 Input voltage sensors1国面面量面1国面4-294.4.13 Temperature sensors4-294414 Power module extraction switch4-304,415 Blue lED4-304.4.16LED14-314 4.17 Other leds4-314.5 Connectors4-314.5. 1 Power Module Output Connector4-324.5.2 Power Module Input Connectors81国面面4-324.6 Single-Width,Fu‖- Height Power Module…∴4-334.6.1 Inputs4-344.6.2 Outputs4-354.6.3 Bulk supply current limit4-384.6.4 Control and monitoring………………………4-384.6.5 Redundancy4-384.6.6 Mechanical4-4546.7 Thermals.8...8.88.84-45画·面4.6.8 Regulatory.4-4547 Other mechanical considerations…4-464.7.1 Double-Width form factor4-464.7.2 Form factors other than Full-Height4-464.8 Power source considerations.4-464.8.1 DC power feeds4-474.8.2 AC power feeds4-554.9 References4-605 Thermal5.1 Overview5-15.2 AMC. 0 Modules and microtCa国着画5-15.3 AMC.0 Carriers and microtca5.4 Subrack slot5-25.5 Airflow path5.6 AMC.0 Modules and power dissipation.5-35-35.7 MicroTCA system cooling configuration……….….….…....545. 8 Air distribution in a slot5-45.9 Air inlet and exhaust5-55. 10 Slot cooling capability5-55. 11 Module cooling requirements●5.12 Standard air.5-75.12.1 Derivatie5.122 Barometric changes due to weather....…...……….57PICMG( Micro TCAO Specification Draft RC1. 0, May 26, 2006Do not specify or claim compliance with this Draft Specification5.13 Slot impedance curve.5-85.14 Slot fan flow curve5.15 Cooling Unit failure5-85.16 Filters5.17 System sensors….…….….……5-95.18 Thermal and operating environment5-105.19 Thermal and cabling5-105.20 Simulation and impedance testing5-105.20.1 AdvancedMC/MCH reference Module..5-115.20.2 Power Unit reference module∴5-125.21 Simulation environment5.22 Thermal dynamic modeling5-135.23 Fluid networking modeling5.24 Acoustic noise5-135.25 Surface temperature5-145.26 Design recommendations5-155.27 Cooling limitations and examples..5-175.28 References1面5-226 Interconnect6-16.1 Introduction.…6-16.2 Fabric interface6.2.1 Backplane fabric interface support requirements6-26.2.2 MCH fabric interface support requirements6.3 MCH Specific Interfaces6-46.3.1 MCH update Channel interface6-46.3.2 MCH cross-over Channel interface.6-56. 3. 3 MCH PWR ON interface6-66.3.4 Inter-MCH IPMB-L interface6.4 Synchronization clock interface6.4.1 Signal descriptions6-86. 4.2 Clock architectures6-96.4.3 Non-Telecom and Telecom clocks6-136.5 JTAG interface.…6-136.5.1 JSM Overview6-146.5.2 JSM Signaling Overview6-166.5.3 JSM Interface to mch16.54 JSM Interface to mch2.……6-186.5.5 JSM Interface to Advancedmcs.6-196.5.6 JSM Interface to Power modules.6-226.5.7 JSM Master mode selection6-236.5.8 JSM Interface to External tester..6-246.5.9 MCH JTAG6-266.5. 10 Power module jtAG6-276.6 MicroTCA Interface topologies1画6-276.6. 1 Topology models6-286.6.2 Correlation to AdvancedMc fabric regions6-296.7 MCH Connector pin allocation6-306.7.1 Pin naming conventions6-316.7.2 Fabric interface naming conventions6-31PICMG MicroTCA. 0 Specification Draft RC1.o, May 26, 2006Do not specify or claim compliance with this Draft Specification6.7.3 Synchronization clock interface naming convention6-316.7.4 MCH Connector pin list……………6-326.8 System examples.6-386.8. 1 Redundant MicroTCA system6-386.8.2 Variant redundant microtca interconnect6-416.8.3 Non-redundant MicroTCA system6-45Connectors7-17.1 General information7-17.2 AdvancedMC Backplane Connectors7-17.2.1 AdvancedMC Backplane Connector pin list7-27.2.2 AdvancedMC Backplane Connector dimensions7-27.2.3 Advancedmc backplane connector pcb layout∴7-67. 2. 4 AdvancedMC Backplane Connector electrical characteristics7-107.2.5 AdvancedMC Backplane Connector high-speed characteristics7-147.2.6 AdvancedMC Backplane Connector mechanical characteristics7-187.3 Micro TCa Carrier hub connectors7-197.3.1 Micro TCA Carrier Hub Connector pin list7-197.3.2 Micro TCA Carrier Hub mating interface design7-207.3.3 Micro TCA Carrier Hub backplane connector7-227.3. 4 Micro TCA Carrier Hub Connector Backplane PCB layout7-237. 3.5 Micro tca Carrier Hub connector electrical characteristics7-247.3.6 Micro TCA Carrier Hub Connector high-speed characteristics7-2573.7 Micro tCa Carrier hub connector mechanical characteristics7-297.4 Power Module Output Connector7.4.1 Power Module Output Connector pin list and mating sequence7-317.4.2 Power Module Output Connector dimensions7-327. 4.3 Power Module Output Connector Backplane PCb layout7-347.4.4 Electrical characteristics for power Module output connector.7-367.4.5 Power Module Output Connector mechanical characteristics7-397.5 Power Module Input Connector7.5.1 Power Module Input Connector pin list and mating sequence7-417.5.2 Power Module Input Connector dimensions7-427.5.3 Electrical characteristics for Power Module Input Connector7-477.5.4 Power Module Input Connector mechanical characteristics7-517.6 AdvancedMC Auxiliary Connector7-537.7 Test schedule7-547.7.1 Specimen measurement arrangements7-547.7.2 Test schedule tables.7-647. 8 References.7-798 Regulatory requirements and industry standard guidelines8-18.1 Regulatory……8-18.1.1 Safety8-18.1.2 Electromagnetic compatibility..……………8-28.1.3 Ecology standards.8-28.2 Telecommunications industry standards requirements8-38. 2. 1 EMC/safety requirements for the telecommunications industry.......8-38.2.2 Environmental requirements for the telecommunications industry ..............8-48.3 Reliability/MTBF standards8-7PICMG( Micro TCAO Specification Draft RC1. 0, May 26, 2006Do not specify or claim compliance with this Draft Specification8.4 Cross reference list8.5 FRU test guidelines∴8-78.5. 1 FRU safety test8-88.5.2 FRU EMC testing.8-88.5.3 FRU environmental testing8-9a Module mis-insertion considerationsA-1A 1 MCH Module mis-insertion combinationsA-2A 2 AdvancedMc module mis-insertion combinationsA-5A3 Power management implicationsA-8A 4 System management implicationsA-8A.4.1 Optional MMC instance on MCH ModuleA-9A.4.2 Using an AdvancedMC in an MCH SlotA-13A.4.3 Using an mch in an AdvancedMc SlotA-15A.4.4 Detecting mis-insertionsA-16A.5 Hardware implicationsA-1A. 5. 1 GNd pins at same locations........A-20A.5.2 PSO# and PS1# pins at same locationsA-23A.5.3 PWR and MP pins at same locationsA27A.5. 4 PWR ON pinA-29A.5.5 Ga[2: 0] pins at same locations道1面4…A-31A.5.6 ENABLE# pin at same locationA-35A.5.7 SDA L and SCL L pinsA-37A 5.8 JTAG pinsA-38A 5.9 Cross-over pinsA-39A.5. 10 TMREQ#, 12C SDA, and I2C SCL pins…A-39B Requirement list….B-1PICMG MicroTCA. 0 Specification Draft RC1.O, May 26, 2006Do not specify or claim compliance with this Draft Specification
    2020-06-05下载
    积分:1
  • 胡广书 数字信号处理理论算法与实现.PDF+光盘.rar
    胡广书的《数字信号处理理论算法与实现》书的PDF(扫描版)和书的光盘(源程序),不错的资源,希望有用~~ 仅用于学习,有条件请支持正版。。
    2020-12-03下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载