登录
首页 » Others » 频率估计matlab

频率估计matlab

于 2020-12-02 发布
0 302
下载积分: 1 下载次数: 9

代码说明:

对噪声信号中的正弦信号,通过Pisarenko谐波分解方法、Music算法和Esprit算法进行频率估计,信号源是: 其中, , , ; 是高斯白噪声,方差为 。使用128个数据样本进行估计。 1、用三种算法进行频率估计,独立运行20次,记录各个方法的估计值,计算均值和方差; 2、增加噪声功率,观察和分析各种方法的性能。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 支持向量机故障诊断及控制技术 matalb
    支持向量机故障诊断及控制技术 matalb 代码
    2020-12-12下载
    积分:1
  • 数据预处理 剔除奇异值点 matlab代码
    数据预处理 剔除奇异值点 matlab代码
    2020-12-01下载
    积分:1
  • SVM多分类代码
    svm多分类代码,包括一对多和一对一两种多分类策略,内含数据集,代码可以直接运行,对了解多分类绝对大有帮助。
    2020-11-28下载
    积分:1
  • 张正友相机标定(自己写calibratie函数,不用OpenCV库函数)
    由于导师要求自己编写calibrate函数,锻炼自己编写带啊能力和理解论文能力,上传至此,供大家学习交流,张正友相机标定(自己编写calibratie函数,不用OpenCV库函数)
    2020-12-08下载
    积分:1
  • 基于php+mysql+Apache的学生成绩管理系统
    本文采用php5.4+apache2.4,使用Mysql5.7数据库实现了网页版学生成绩管理系统,本系统分为三个模块:系统管理员模块、教师模块、学生模块。其中教师模块可以录入选课学生的成绩、修改成绩、查看成绩;学生模块可以选课,查看成绩;系统管理员拥有最高的权限,可以对学生的成绩进行审核,添加修改学生、教师、课程。我是在netbeans集成环境上进行开发的,希望能帮到需要的人,包含完整的项目包,使用说明、课程设计报告、使用说明,有不懂了可以留言啊。
    2020-12-05下载
    积分:1
  • Matlab_Simulink动力学系统建模仿真
    使用Matlab软件中的Simulink对动力学系统建模及其仿真。
    2020-07-04下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • 电赛目测量放大器设计(Proteus完美仿真)
    电赛题目测量放大器设计(Proteus完美仿真)(基于C语言设计,完美仿真)
    2021-05-06下载
    积分:1
  • ModbusTCP测试工具
    好用的ModbusTCP服务器端和客户端测试工具,亲测可用,稳定
    2020-12-05下载
    积分:1
  • 【第4部分 定义和缩略语】GBT 20438.4-2006(IEC 61508-4-1998) 电气 电子 可电子安全相关系统的功能安全.pdf
    GBT 20438.4-2006(IEC 61508-4-1998) 电气 电子 可编程电子安全相关系统的功能安全 第4部分 定义和缩略语.pdf
    2020-11-29下载
    积分:1
  • 696518资源总数
  • 104607会员总数
  • 44今日下载