-
【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
- 2020-12-10下载
- 积分:1
-
图书馆管理系统-MFC写的-非常详细-完善
本图书管理系统实现了以下功能: 实现图书的入库与入库退货管理。 实现图书的库存盘点管理。 实现图书的定价、调价管理。 实现图书的销售、销售退货管理。 实现图书的入库查询、入库退货查询、图书销售查询等信息查询。操作流程要想使用本系统,请按照以下流程操作:(1)通过“基本信息管理”/“操作员管理”命令,添加操作员信息。(2)通过“基本信息管理”/“图书种类管理”、“仓库信息管理”、“柜台信息管理”、“供应商信息管理”及“图书信息管理”命令,设置基本信息。(3)通过“库存管理”/“图书入库管理”命令,添加图书入库信息。图书入库后,可以通过“图书定价管理”及“图书调价管
- 2020-12-05下载
- 积分:1
-
simulink仿真伺服系统三环控制
【实例简介】使用simulink仿真的伺服系统三环控制简易的伺服电机的simulink模型,未引入摩擦系数。使用simulink仿真的伺服系统三环控制简易的伺服电机的simulink模型,未引入摩擦系数。
- 2021-11-18 00:40:54下载
- 积分:1
-
凯斯西储大学轴承实验室故障诊断数据
数据集本身保存在matlab环境下所以以.mat命名 自己是在python环境下用的 在SVM和BPNN下都取得良好结果,原始数据集本身比较整齐,服从正态分布。
- 2020-12-11下载
- 积分:1
-
基于matlab的声音信号频谱分析和时域分析
这里主要是对声音信号进行分析。因为Matlab在数字信号处理上的便捷,又有功能强大的工具箱辅助设计,所以我们可以利用Matlab完成声音信号频谱分析和时序分析的设计。本次设计内容包括:1) 信号的获取2) 时域分析:包括频率,振幅,相位,周期,均值,峰值等3) 频域分析:主要分析波形的幅值、相位与频率的关系
- 2020-12-02下载
- 积分:1
-
qt3电子点菜系统源码.rar
【实例简介】qt3电子点菜系统源码,qt3电子点菜系统源码,qt3电子点菜系统源码。
- 2021-11-30 00:55:23下载
- 积分:1
-
异步电机FOC控制simulink仿真模型
异步电机的矢量控制仿真,Simulink模型,已仿真无报错。
- 2020-12-06下载
- 积分:1
-
MATLAB数字图像处理算法演示程序GUI
MATLAB数字图像处理文件:打开、显示、重载、RGB变灰度、保存;几何变换:垂直、水平镜像,图像转置、平移、缩放、旋转;正交变换:FFT、DFT、DCT、DST、DHT、DWasht;灰度处理:反色、直方图均衡、阈值变换、阈值变换、分段线性变换、对数非线性变换、指数非线性变换;图像增强:噪声(高斯、椒盐),平滑(均值法、邻域平均法、中值滤波法、巴特沃氏低通滤波);锐化:梯度锐化、拉普拉斯锐化、巴特沃氏高通滤波;伪彩色增强:亮度切割法、灰度级彩色变换法;图像分割:灰度阈值法、边缘检测法(Robert算子、Laplacian算子、Prewitt算子、Canny算子、Sobel算子
- 2020-12-02下载
- 积分:1
-
simulink 64QAM 调制
采用二进制码流,经串并转换,结合系统自带QAM调制,分离虚实部进行调制。
- 2020-11-27下载
- 积分:1
-
高级运动控制系统及其应用研究.pdf
好书要求审核员提高积分,为何我上传最高积分只能设置为5?而我下载别人的积分都是10、50之类的?高级运动控制系统及其应用研究.pdf带书签带书签高级运动控制系统及其应用研究.pdf带书签
- 2020-12-12下载
- 积分:1