登录
首页 » Others » 基于DSP2812的SVPWM算法C语言编程

基于DSP2812的SVPWM算法C语言编程

于 2020-12-01 发布
0 267
下载积分: 1 下载次数: 1

代码说明:

很难找到的基于TI公司的型号为TMS320F2812的DSP控制SVPWM算法的C语言编程

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • android 弹幕射击游戏设计与开发毕业设计
    android 弹幕射击游戏设计与开发毕业设计包含:代码,ppt,论文android 弹幕射击游戏设计与开发毕业设计包含:代码,ppt,论文android 弹幕射击游戏设计与开发毕业设计包含:代码,ppt,论文android 弹幕射击游戏设计与开发毕业设计包含:代码,ppt,论文android 弹幕射击游戏设计与开发毕业设计包含:代码,ppt,论文android 弹幕射击游戏设计与开发毕业设计包含:代码,ppt,论文
    2020-12-02下载
    积分:1
  • PCIE PCI-E X16的金手指和插座的3D 立体PCB封装 模板,AD DXP
    PCIE-16x 的Altium PCB封装, 包含 金手指 封装 和 插座封装, 3D模型,不是平面的,PCIE-X16.PcbLib,可用Altium Designer打开
    2020-12-05下载
    积分:1
  • 山特ups在线不间断电源Rs232串口通信协议
    为了学习ups在线不间断电源,这里贴出了关于山特ups的通信协议,希望对大家有所帮助。
    2020-12-09下载
    积分:1
  • STM32F407+ov5640摄像头在TFTLCD实时显示图像
    利用STM32F407和OV5640 摄像头采集图像,并且实时显示在TFTLCD上。
    2020-11-03下载
    积分:1
  • 菜鸟5小时速成FPGA_PCIE设计高手教
    菜鸟5小时速成FPGA_PCIE设计高手教程
    2020-12-11下载
    积分:1
  • 点云的边界提取
    能够将散乱的点云数据边界点及特征点提取出来,并显示。
    2020-12-03下载
    积分:1
  • 基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究
    在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究古文君1 ,田有文 1* ,张芳1 ,赖兴涛 1 ,何宽1 ,姚萍1 ,刘博林 2)586-482016620010~15mm0.8~2.3g。fone3:(InSpector V10E, Spectral InFinland)1392pix×1040pixCCDL CCD2(IGV-B141OM, IMPERX Incorporated, USA), 150W1. CCD Camera; 2.Spectrometer; 3.Shot; 4. Light source; 5. Samples(3900 Illuminatior, Illumination Tech6.Translationplatform7.Lightsourcecontroller;8.computernologies inc.,USA)、(IRCP0076-19. Translation platform controllerCOM,)、(120cm×50cmx(DELL VoStro 5560D-1528Figure 1 Schematic diagram of hyperspectral imagingcmsystem400~1000nm,4722.8nmRRGY-4(10mm)(DBR45(successive projections algorithm, SPA(stepwise multiple linear regression, SMLR)(SPA)(SMLR)SPASPASMLRSPA-SPA、SMLR_SMLR、SPA- SMLRSMLR-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5871.6BP(error back propagation)BP17(correlation coeffiient of calibration, Re)(root mean square error of calibration set, RMSEC)correlation coeffiient of pre-diction, Rp)(root mean square error of prediction set, RMSEP)ENVI 4.8(Research System Inc, ), MATLAB 2014a(The Math Works Inc)、TheUnscrambler9.7、 Excel2010(Ⅵ icrosoftdgle banddWcvef.BP models for soluble solidsThe selected characteristic wavelengthCurve of relative reflectanceExtract the region of interescontent and firmness prediction2figure 2 Flow chart of data processing280mm,68ms,28mm·s-。99%202.2600nm600nm2b2c)21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5884823(2f)BPSavitzky-Golasavitzky -golayTable 1 The effect of different spectra preprocessingCalibration setPredictioSpectrum typeRMSECRMSEPOriginal spcctrum0.933/0.9230.3510.4040.9200.9100.508/0.319MSCThe spectrum after MSC processing0.940/0.9450.56lO.3120.9190.9320.516/0.282SNThe spectrum after SNV processin0.93709340.60210.24309220.9010.6320.462Savitzky-golayThe spectrum after Savitzky-Golay processing 0.955/0.9550.3240.2410.951/0.9490.400/0.2782.5SPA-SPA SMLRSMLR SPA-SMLR SMLR-SPASPA-SPASPASavitzky-GolaySPATable 2 The results of multi-stage characteristic wavelength selection methodnmCharacteristie wavelength selection methodSPA-SPA452,455,470,482,490,785,893,912,921,942,950455,470,482,785,893.912SMLR-SMLR457,508,516,534,543,51,556,568,712,720.774,778508,534,543,712,720,774SPA-SMLR452,455,470,482,490,785,893,912,921,942,950452,470,482,490,893,912SMLR-SPA457,508,516,534,543,551,556,568,712,720,774,78534,7202.6Savilzky-gola(FS)392SPA-SPASMLR-SMLRSMLR-SMLRSMLR-SPABPBP0.001500021994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct589BPBPSPA-SPARp RMseP0.9520.391°Brix,RpRMSEP0.9530.234BrixTable 3 Detection results of soluble solid content and firmness of blueberry based on different multi-stagecharacteristic wavelength selection methodsCalibration setPrediction setCharacteristic selection method Wavelength numberRMSECRMSEP3929550.9550.324/0.2410.9510.9490.400/0.278SPA-SPA0.9590.9560.3180.1530.9520.9530.391/0.234SMLR-SMLR0.9560.9340.414/0.243912109020.559/0.349SPA SMLR0.828/0.8581.3670.58582208091.440/0.719SMLR- SPA20.958/0.9360.402/0.3359320.9280.435/0,4041387nm1229nm91.5%BPRRMSEP0.904215.163lBP3Rv0.84V0.94Rv0.83,SEV0.63。400-1000nmSavitzky-GolayBPSPA-SPASPA-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct59048[1 KADER F,ROVEL. B Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium corymbosumLUJ].Food Chemistry, 1996,55(1): 35-40「J,2012,33(1):340-342,2017,38(2):301-305.[4 MENDOZA F, LU R, ARIANA D,et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction ofple [ruil firmness and soluble solids conlenl[J] Poslharvesl Biology and Technology, 2011, 62(2: 149-160[5 SUN M J, ZHANG D, LIU L,et al. How to predict the sugariness and hardness of melons a near-infrared [J]. Food Chemistry,2017,218(3:413-42116 SIEDLISKA A, BARANOWSKI P, MAZUREK W, ct al. Classification models of bruise and cultivar detection on the basis of hy-perspectral imaging data[J]. Computers and Electronics in Agriculture, 2014, 106: 66-74[7 LIU D, SUN D W, ZENG X N, el al. Recenl aDvances in wavelength seleclion lechniques for hyperspectral image processing inthe food industry[J]. Food Bioprocess Technol, 2014, 7: 307-323[8 ZHANG C, GUO C T, LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector ma-chine[j] Journal of Food Engincering, 2016, 179: 11-18[9J,2016,47(5:634-6402009,29(:1611-1615201536(12)171-17612]J,2012,32(11:3093309[13] LI B C, HOU B L, ZHANG D W,et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testingInethods based on visible-near infrared hyperspecTral imaging[J]. OpLik, 2016, 127: 2624-2630[14] FAN S X, ZHANG B H,LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J. Postharvest Biology and Technology, 2016, 121: 51-61[15 RAJKUMAR P, WANG N,EIMASRY G, et al.Studies on banana fruit quality and maturity stages using hyperspectral imaging[ JIJournal of Food Engineering 2012, 108: 194-200,2015,36(16):10172015,35(8:2297-2302[18]WANG N,2007,23(2:151-155.「192008,39(5):91-9320」201536(10:70-74.[21] WU D, SUN D WAdvanced applications of hyperspectral imaging technology for food quality and safety analysis and assess-ment a review part T[J]. Innovative Food Science and Emerging Technologies, 2013, 19(4): 1-14J2014,35(8:57-61BP,2012.124」13,44(2):142-146.25],201523(6:1530-1537M011:41-48.[27,2013,24(10:1972-19762010,30(10):2729-2733?1994-2018ChinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsreservedhttp://www.cnki.nct
    2020-12-07下载
    积分:1
  • stm32智能门禁系统
    由STM32作为主控,RFID采集信息,AT24C02保存信息,OLED进行显示,矩阵键盘输入密码等模块组成可管理员控制增、减用户,用户可刷卡开门的智能门禁系统。
    2020-12-06下载
    积分:1
  • springBoot整合mybatis完整详细版
    springBoot整合mybatis完整详细版,简单清晰明了,适合新手拿来研究训练学习,整合教程博客https://blog.csdn.net/iku5200/article/details/82856621
    2020-11-04下载
    积分:1
  • 光纤Bragg光栅反射谱
    编写了matlab程序模拟FBG的反射谱,通过改变FBG的各种物理参数可以求得对应的FBG反射谱。
    2021-05-07下载
    积分:1
  • 696518资源总数
  • 106265会员总数
  • 10今日下载