登录
首页 » Others » 基于ARIMA算法和小波分析+BP神经网络算法的短期负荷预测

基于ARIMA算法和小波分析+BP神经网络算法的短期负荷预测

于 2020-11-30 发布
0 460
下载积分: 1 下载次数: 23

代码说明:

我们用了两种算法对PJM某区电力负荷进行超短期预测。ARIMA算法预测速度较快,平均误差在3%以内,特别适合这种超短期负荷预测,而小波分析+BP神经网络算法是一种适应性比较广的算法,在此次超短期负荷预测中它的平均误差在7%以内,预测时间相对更长。此程序由华北电力大学电力专业学生编写,采用了VB、MATLAB混合编程(VB的界面,MATLAB的内核),利用了2种算法实现电力负荷超短期预测,这2种方法都是当前较先进实用的算法,十分有启发性。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 基于MATLAB的电力系统潮流计算
    本代码用于五节点系统(第五节点为平衡节点)的在直角坐标系下的潮流计算,也可以拓展为任意节点的情况。共含有四个子程序,分别为雅克比矩阵的计算、功率电压不平衡计算、中间好、过程以及最终结果计算。适用于课程设计,亲测有效。
    2021-05-06下载
    积分:1
  • Wince 打印 Pcl3 5语言大全.rar
    【实例简介】PCL语言能够进一步提高打印质量,通常在中高端打印机产品中才会出现,是决定打印机输出复杂版面能力的重要指标。 PCL语言 正是Adobe公司的对PostScript语言的收费方式,给HP公司的PCL( Printer CommandLanguage,打印机控制语言)语言提供了发展空间,PCL语言是HP公司于70年代针对其打印机产品推出的一种打印机页面描述语言。HP公司的市场策略与Adobe完全不同,其他厂商可以在他们的打印机产品中自由模仿或使用PCL语言。正是PCL语言的开放性,降低了使用PCL语言的打印机产品的成本,从而使其在打印机产品中的普及程度远远高于PostScript语言。 PCL语言最初也是为点阵打印机设计的,PCL3是第一个得到广泛应用的版本,但它只支持一些简单的打印任务。PCL4虽然还只能应用在个人打印机中,但增加了对图形打印的支持,但由于解释工作比较简单,PCL4比后期的PCL5和PCL6对打印控制器的要求要低很多。 PCL5是HP公司为它的激光打印机LaserJetⅢ设计的,它提供了一些与PostScript语言相似的功能,开始支持矢量字库和矢量图形描述,实现了WYSIWYG(What You See Is What You Get, 所见即所得),PCL5中也使用了各种压缩技术来减小数据量,加快数据传输。 PCL5e开始支持双向数据通讯,从而使打印机可以向计算机发送打印机的状态信息。PCL5c增加了对彩色打印的支持。 1996年HP公司发布了PCL6,它更加灵活,是一个目标朝向的控制语言,使处理多图形的文件的速度大大加快,实现了更好的WYSIWYG,可以更好地处理Web页面。 两种语言的比较 1.PostScript和PCL两者的工作流程都是首先在计算机的一端将打印内容解释成标准的页面描述文件,这种文件可以被所有采用这种语言的打印机所识别,传送到打印机的核心——控制器中,然后在打印机控制器中将页面描述文件解释成可以打印的图像。从工作流程的角度看,采用这两种语言的打印方式对打印机的“大脑”要求较高,需要打印机能够自己独立处理转换的任务,并且需要打印机本身有足够的内存。 2.PostScript和PCL都具备了标准化和与设备无关性的优势,对计算机系统资源占用也较少,两种语言的高版本还提高了对字库、图形和图像的解释能力,对于提供了高打印质量的产品,大都采用了此两类语言。但相对来说,由于对打印机核心部分——打印控制器性能的要求较高,一定程度会增加机器成本,尤其是PostScript对打印控制器的性能更高。 3.经过对多款使用PCL语言和PostScript语言的黑白和彩色激光打印机进行测试。发现,使用PCL语言的打印机在处理文本或一些常见办公应用软件下的文档时具有非常明显的速度优势,在这些应用下,在打印质量方面与使用PostScript语言的打印机也没有差距。使用PostScript语言的打印机在常见办公应用下的打印速度要慢一些,但在处理PDF文件或在Photoshop等软件下打印大的图形图像文件时具有一定的速度优势,同时其在图形表现准确度、色彩表现准确度和一些字库表现准确度方面也比PCL语言有优势。所以PCL语言比较适合一些普通的商务办公应用,而PostScript语言更加适合对图形和色彩准确度要求比较高的专业应用。这也是目前许多打印机产品同时提供PCL和PostScript两个版本的驱动的一个重要原因。 其他相关 其他要说的一点是关于选配打印语言的问题,打印语言有标配和选配两种:所谓标配是把打印语言解释成一段程序,加载在打印机主控芯片程序里面,从主机过来的打印语言格式数据流直接在此芯片中解释成机芯所能识别和控制的视频数据。而选配则是把打印语言解释器做成了一个相对独立的硬件,插于打印机控制器中预留的解释器插槽中。相对于标配,选配的数据读取速度较慢,数据精确度较低。厂商采取选配打印语言的策略就是为了降低打印机的成本,一般的用户用其自带的打印语言就可以完成相应的工作了,但如果有用户需要其的打印语言,那选购打印语言模块后直接插在打印机上就可以了。
    2021-12-06 00:32:29下载
    积分:1
  • 计算机视觉PPT计算机视觉PPT计算机视觉PPT
    计算机视觉计算机视觉计算机视觉计算机视觉计算机视觉计算机视觉
    2020-12-01下载
    积分:1
  • 基于C++的三菱机床实时数据采集可运行demo源码(VS2017打开项目)
    物联网采集机床数据监控基于C++的三菱机床实时数据采集可运行demo源码(VS2017打开项目)
    2020-11-28下载
    积分:1
  • Pspice三相逆变电路
    【实例简介】Pspice三相逆变电路仿真,亲测有效。根据本人之前学习的时候在网上搜索的资源来看,网上的Pspice三相逆变电路大多是不能用的。这个我自己搭建的,亲测有效,完美波形。由于文件太大,我上传两个压缩包,需要一起下载一起解压。如果打不开用不了问题,提供售后服务,2995005018@qq.com
    2021-11-16 00:38:59下载
    积分:1
  • 基于Matlab的文字识别
    代码包含文字分割与识别,索书号文字图像分割,彩色车牌分割识别。
    2020-06-21下载
    积分:1
  • BP算法ISAR成像基于FEKO仿真模型
    BP算法进行ISAR成像的程序,加载的FEKO仿真数据,matlab程序成像
    2020-12-06下载
    积分:1
  • 正弦光栅生成
    生成3个频率四步移相共12幅投影光栅,并通过循环进行存储。
    2020-12-10下载
    积分:1
  • MATLAB在卡尔曼滤波器中应用的理论与实践Kalman
    MATLAB在卡尔曼滤波器中应用的理论与实践KalmanKALMAN FILTERINGTheory and Practice Using MATLABThird editionMOHINDER S GREWALCalifornia State University at FullertonANGUS P. ANDREWSRockwell Science Center (retired)WILEYA JOHN WILEY & SONS, INC. PUBLICATIONCopyright 2008 by John Wiley sons, Inc. All rights reservedPublished by John Wiley sons, InC, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or byany means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permittedunder Section 107 or 108 of the 1976 United States Copyright Act, without either the prior writtenpermission of the Publisher, or authorization through payment of the appropriate per-copy fee to theCopyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA 01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermissionshouldbe addressed to the Permissions Department, John Wiley Sons, Inc, lll River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permissionimit of liability Disclaimer of Warranty: While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability orfitness for a particular purpose. No warranty may be created or extended by sales representatives orwritten sales materials. The advice and strategies contained herein may not be suitable for your situationYou should consult with a professional where appropriate. Neither the publisher nor author shall be liablefor any loss of profit or any other commercial damages, including but not limited to special, incidentalconsequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic format. For more information about wiley products, visit our web site atwww.wiley.comLibrary of Congress Cataloging- in-Publication DataGrewal. Mohinder sKalman filtering: theory and practice using MATLAB/Mohinder S. GrewalAngus p. andrews. 3rd edIncludes bibliographical references and indexISBN978-0-470-17366-4( cloth)1. Kalman filtering. 2. MATLAB. I. Andrews, Angus P. II. TitleQA402.3.G69520086298312—dc22200803733Printed in the United States of america10987654321CONTENTSPrefaceAcknowledgmentsXIIIList of abbreviationsXV1 General Information1.1 On Kalman Filtering1.2 On Optimal Estimation Methods, 51. 3 On the notation Used In This book 231. 4 Summary, 25Problems. 262 Linear Dvnamic Systems2. 1 Chapter focus, 312.2 Dynamic System Models, 362. 3 Continuous Linear Systems and Their Solutions, 402.4 Discrete Linear Systems and Their Solutions, 532.5 Observability of Linear Dynamic System Models, 552.6 Summary, 61Problems. 643 Random Processes and Stochastic Systems3.1 Chapter Focus, 673.2 Probability and random Variables (rvs), 703.3 Statistical Properties of RVS, 78CONTEN3.4 Statistical Properties of Random Processes(RPs),803.5 Linear rp models. 883.6 Shaping Filters and State Augmentation, 953.7 Mean and Covariance propagation, 993.8 Relationships between Model Parameters, 1053.9 Orthogonality principle 1143.10 Summary, 118Problems. 1214 Linear Optimal Filters and Predictors1314.1 Chapter Focus, 1314.2 Kalman Filter. 1334.3 Kalman-Bucy filter, 1444.4 Optimal Linear Predictors, 1464.5 Correlated noise Sources 1474.6 Relationships between Kalman-Bucy and wiener Filters, 1484.7 Quadratic Loss Functions, 1494.8 Matrix Riccati Differential Equation. 1514.9 Matrix Riccati Equation In Discrete Time, 1654.10 Model equations for Transformed State Variables, 1704.11 Application of Kalman Filters, 1724.12 Summary, 177Problems. 1795 Optimal Smoothers5.1 Chapter Focus, 1835.2 Fixed-Interval Smoothing, 1895.3 Fixed-Lag Smoothing, 2005.4 Fixed-Point Smoothing, 2135.5 Summary, 220Problems. 226 Implementation Methods2256. 1 Chapter Focus, 2256.2 Computer Roundoff, 2276.3 Effects of roundoff errors on Kalman filters 2326.4 Factorization Methods for Square-Root Filtering, 2386. 5 Square-Root and UD Filters, 2616.6 Other Implementation Methods, 2756.7 Summary, 288Problems. 2897 Nonlinear Filtering2937.1 Chapter Focus, 2937.2 Quasilinear Filtering, 296CONTENTS7.3 Sampling Methods for Nonlinear Filtering, 3307.4 Summary, 345Problems. 3508 Practical Considerations3558.1 Chapter Focus. 3558.2 Detecting and Correcting Anomalous behavior, 3568.3 Prefiltering and Data Rejection Methods, 3798.4 Stability of Kalman Filters, 3828. 5 Suboptimal and reduced- Order Filters, 3838.6 Schmidt-Kalman Filtering, 3938.7 Memory, Throughput, and wordlength Requirements, 4038.8 Ways to Reduce Computational requirements 4098.9 Error Budgets and Sensitivity Analysis, 4148.10 Optimizing Measurement Selection Policies, 4198.11 Innovations analysis, 4248.12 Summary, 425Problems. 4269 Applications to Navigation4279.1 Chapter focus, 4279.2 Host vehicle dynamics, 4319.3 Inertial Navigation Systems(INS), 4359. 4 Global Navigation Satellite Systems(GNSS), 4659.5 Kalman Filters for GNSS. 4709.6 Loosely Coupled GNSS/INS Integration, 4889.7 Tightly Coupled GNSS /INS Integration, 4919. 8 Summary, 507Problems. 508Appendix A MATLAB Software511A 1 Notice. 511A 2 General System Requirements, 511A 3 CD Directory Structure, 512A 4 MATLAB Software for Chapter 2, 512A. 5 MATLAB Software for Chapter 3, 512A6 MATLAB Software for Chapter 4, 512A. 7 MATLAB Software for Chapter 5, 513A 8 MATLAB Software for Chapter 6, 513A 9 MATLAB Software for Chapter 7, 514A10 MATLAB Software for Chapter 8, 515A 11 MATLAB Software for Chapter 9, 515A 12 Other Sources of software 516CONTENAppendix b A Matrix Refresher519B. 1 Matrix Forms. 519B 2 Matrix Operations, 523B 3 Block matrix Formulas. 527B 4 Functions of Square Matrices, 531B 5 Norms. 538B6 Cholesky decomposition, 541B7 Orthogonal Decompositions of Matrices, 543B 8 Quadratic Forms, 545B 9 Derivatives of matrices. 546Bibliography549Index565PREFACEThis book is designed to provide familiarity with both the theoretical and practicalaspects of Kalman filtering by including real-world problems in practice as illustrativeexamples. The material includes the essential technical background for Kalman filter-ing and the more practical aspects of implementation: how to represent the problem ina mathematical model, analyze the performance of the estimator as a function ofsystem design parameters, implement the mechanization equations in numericallystable algorithms, assess its computational requirements, test the validity of resultsitor the filteThetant attributes ofthe subject that are often overlooked in theoretical treatments but are necessary forapplication of the theory to real-world problemsIn this third edition, we have included important developments in the implemen-tation and application of Kalman filtering over the past several years, including adaptations for nonlinear filtering, more robust smoothing methods, and develelopingapplications in navigationWe have also incorporated many helpful corrections and suggefrom ourreaders, reviewers, colleagues, and students over the past several years for theoverall improvement of the textbookAll software has been provided in MatLab so that users can take advantage ofits excellent graphing capabilities and a programming interface that is very close tothe mathematical equations used for defining Kalman filtering and its applicationsSee Appendix a for more information on MATLAB softwareThe inclusion of the software is practically a matter of necessity because Kalmanfiltering would not be very useful without computers to implement it. It provides aMATLAB is a registered trademark of The Mathworks, IncEFACEbetter learning experience for the student to discover how the Kalman filter works byobserving it in actionThe implementation of Kalman filtering on computers also illuminates some of thepractical considerations of finite-wordlength arithmetic and the need for alternativealgorithms to preserve the accuracy of the results. If the student wishes to applywhat she or he learns, then it is essential that she or he experience its workingsand failings--and learn to recognize the differenceThe book is organized as a text for an introductory course in stochastic processes atthe senior level and as a first-year graduate-level course in Kalman filtering theory andapplicationIt can also be used for self-instruction or for purposes of review by practi-cing engineers and scientists who are not intimately familiar with the subject. Theorganization of the material is illustrated by the following chapter-level dependencygraph, which shows how the subject of each chapter depends upon material in otherchapters. The arrows in the figure indicate the recommended order of study. Boxesabove another box and connected by arrows indicate that the material represented bythe upper boxes is background material for the subject in the lower boxAPPENDIX B: A MATRIX REFRESHERGENERAL INFORMATION2. LINEAR DYNAMIC SYSTEMSRANDOM PROCESSES AND STOCHASTIC SYSTEMS4. OPTIMAL LINEAR FILTERS AND PREDICTORS5. OPTIMAL SMOOTHERS6. IMPLEMENTATIONMETHODS7. NONLINEAR8. PRACTICAL9. APPLICATIONSFILTERINGCONSIDERATIONSTO NAVIGATIONAPPENDIX A: MATLAB SOFTWAREChapter l provides an informal introduction to the general subject matter by wayof its history of development and application. Chapters 2 and 3 and Appendix b coverthe essential background material on linear systems, probability, stochastic processesand modeling. These chapters could be covered in a senior-level course in electricalcomputer, and systems engineeringChapter 4 covers linear optimal filters and predictors, with detailed examples ofapplications. Chapter 5 is a new tutorial-level treatment of optimal smoothing
    2020-12-01下载
    积分:1
  • 翠欧软件开发(ZDevelop手册.pdf)
    翠欧软件开发(ZDevelop手册.pdf)
    2020-12-08下载
    积分:1
  • 696518资源总数
  • 104582会员总数
  • 48今日下载