登录
首页 » Others » onvif的经典实例源码,有客户端和服务器

onvif的经典实例源码,有客户端和服务器

于 2020-11-29 发布
0 179
下载积分: 1 下载次数: 1

代码说明:

目前网络上能找到的onvif开发实例源码很少,希望该代码能有助于各位大侠进行onvif开发

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 个人收集的人脸识别经典算法源码
    内含PCA 2DPCA LDA FDA NMFs算法的matlab或C OPENGL源代码ORL人脸库,调试好的人脸系统等
    2020-12-06下载
    积分:1
  • 数字多波束形成 matlab
    根据数字多波束形成算法(线阵),形成在空域的扫描
    2020-12-04下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 自己写的简单网络协议解析器,用于抓包并解析数据包
    基于Tkinter的Python GUI界面设计,能分条展示数据包的概要信息(summary()),分层解析数据包,可显示数据包的十六进制编码值(hexdump());在抓包的同时解析数据包(不能等抓包停止后才解析),可判断IP、TCP或UDP数据包的校验和是否正确;支持BPF过滤器,抓包过程可以暂停和停止;可将数据包存储在pcap文件中,以供wireshark或其它数据包解析工具分析;可以在退出时提示用户进行保存未保存的数据包,进行保存工作;可以在再次开始新的抓包前提示用户保存未保存的数据包。
    2020-06-28下载
    积分:1
  • 深入浅出WPF 重新整理目录,带源码
    本书的内容分为两大部分。第一部分是学习wpf开发的基础知识,包括XAML语言的详细剖析、wpf控件的使用、用户界面布局的介绍。第二部分是作为优秀wpf程序员所应掌握的知识,包括依赖对象和数据关联、路由事件与命令、数据模板与控件模板、绘图与动画等。
    2020-12-09下载
    积分:1
  • 《ANSYS优化设计手册》
    用ANSYS进行优化设计可以起到事半功倍的效果,本书为您详细讲解如何进行优化设计。
    2020-12-09下载
    积分:1
  • 基于矩阵特征值分解谱分析(music等等)
    基于矩阵特征值分解谱分析(music等等)
    2020-12-09下载
    积分:1
  • 毕业设计《BP神经网络搭建实现PID控制器的模型》
    本人毕业设计的内容,《BP神经网络搭建实现PID控制器的模型》花了半年汗水的结晶啊,毕设就靠它!
    2020-12-04下载
    积分:1
  • HMM预测天气,python实现
    使用python实现的,基于HMM的天气预测,是入门的好例子。
    2020-12-02下载
    积分:1
  • FMEA培训教及APIS IQ-FMEA软件使用手册(中文).rar
    功能安全FMEA培训教程(中文)以及AOIS公司的专业FMEA分析软件IQ-FMEA的使用教程(中文)
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 104775会员总数
  • 42今日下载