SVPWM算法详解_已标注重点_
详细的讲解了SVPWM的过程,及其仿真,很适合初学者或(37)即磁链空间矢量可以等效为电压空间矢量的积分,如果能够控制电压空间矢量的轨迹为如式(3.4)所示的圆形矢量,那么磁链空间矢量的轨迹也为圆形。这样,电动机旋转磁场的轨迹问题就可以转化为电压空间矢量的运动轨迹问题。进一步分析,由式(3.3)(3.5)(3.7)可以得到公式(3.8)∫-+yy(38)对电压积分,利用等式两边相等的原则有(39)其中,v为电机磁链的幅值,即为理想磁链圆的半径。y当供电电源保持压频比不变时,磁链圆半径v是固定的。在 SVPWM控制技术中,是取以y为半径的磁链圆为基准圆的。32逆变器电压的输出模式图32给出了电压源型PWM逆变器—异步电动机示意图14。昇步电动机定子绕组YY图3.2PWM逆变器电路(1~6为GBT)对于180°导电型的逆变器来说,三个桥臂的六个开关器件共可以形成8种开关模式。用分别标记三个桥臂的状态,规定当上桥臂器件导通时桥臂状态为1,下桥臂导通时桥臂状态为0,这样逆变器的八种开关模式对应八个电压空间矢量,其中为直流侧电压在逆变器的八种开关模式中,有六种开关模式对应非零电压空间矢量,矢量的幅值为一;有两种开关模式对应的电压矢量幅值为零,称为零矢量。当零矢量作用于电机时不形成磁链矢量;而当非零矢量作用于电机时,会在电机中形成相应的磁链矢量。对于每一个电压空间矢量,可由图32求出各相的电压值,再将各相的电压值代入式(3.3),可以求得电压空间矢量的位置。下面以开关状态)=(、0、0)为例,即开关导通,其余关断。逆变电路的形式可以变为B相和C相并连后再和A相串连的形式,易得将其数值代入式(33),可得采用同样的方法可以得到如表31所示的逆变器空间电压矢量。表31逆变器的不同开关状态对应的空间矢量表相电压矢量表达式定子电压开关状态(Us大小为空间矢量A相B相C相0000000101001110010111100由于 SVPWM控制的是逆变器的开关状态,在实际分析逆变器一电动机系统时,可以通过分析逆变器输出的电压空间矢量来分析电机定子电压的空间矢量,下面给出证明。设逆变器输出的三相电压为、,由图3.2可求出加到电机定子上的相电压为(310)其中,为电机定子绕组星接时中点0相对于逆变器直流侧点的电位。电机定子电压空间矢量为(311)而由三角函数运算知++因此,逆变器输出的电压空间矢量为(312)由式(3.12)可知,在PWM逆变器一电动机系统中,对电机定子电压空间矢量的分析可以转化为对逆变器输出电压空间矢量的分析。这时,在求解表3.1时,可以直接利用逆变器输出的电压合成得到,即A,B,C三相输出电压值只有一和-—两个值。当逆变器输出某一电压空间矢量时,电机的磁链空间矢量可表示为y =y3.13)其中,W为初始磁链空间矢量;△为的作用时间。当为某一非零电压矢量时,磁链空间矢量y从初始位置出发,沿对应的电压空间矢量方向,以为半径进行旋转运动,当为一零电压矢量时,W=y,磁链空间矢量的运动受到抑制。因此合理地选择六个非零矢量的施加次序和作用时间,可使磁链空间矢量顺时针或逆时针旋转形成一定形状的磁链轨迹。在电机控制当中尽量使磁链轨迹逼近正多边形或圆形。同时,在两个非零矢量之间按照一定的原则,比如开关次数最少,插入一个或多个零矢量并合理选择零矢量的作用时间,就能调节ψ的运动速度。33SWPM的具体实现方法在实际应用中,应当利用 SVPWM自身的特点找到控制规律,避开复杂的数学在线运算,从而较为简单的实现开关控制,本节将给出实现 SVPWM的具体方法。根据3.2节中给出的不同开关状态组合可以得到如图33的电压空间矢量图C图3.3 SVPWM矢量、扇区图通常在矢量控制的系统当中,根据控制策略,进行适当的巫标变换,可以给出两相静止坐标系即(a,B)坐标系电压空间矢量的分量,g,这时就可以进行 SVPWM的控制,具体要做以下三部分的工作如何选择电压矢量。2.如何确定每个电压矢量作用的时间。3.确定每个电压矢量的作用顺序3.3.1电压空间矢量的空间位置这里需要引入扇区的概念,将整个平面分为六个扇区。如图3.3所示,每个扇区包含两个基本矢量,落在某个扇区的电压空间矢量将由扇区边界的两个基本电压空间矢量进行合成。在确定扇区时,引入三个决策变量A,B,C。根据给出的待合成的空间矢量的两个分量,p来决定A,B,C的取值,有以下关系式所在扇区的位置为当N取不同的值对应的扇区位置如图3.3所示,这样给定一个空间电压矢量就可以确定其所在的扇区。33.2电压空间矢量的合成扇区确定之后,就可以利用扇区边界上的两个基本矢量合成所需的矢量在合成过程中应当使得两个基本矢量的合成效果接近于期望矢量的效果。于是采用伏秒平衡的原则,以图3.3所示的第Ⅲ扇区为例,以a尸轴为基准,将两个基本矢量向aB轴上投影,应当有轴:=||+尸轴其中,为对应电压矢量作用的时间(=),为采样周期,通常为PW的调制周期。且|=||=-。求解上面两式可以得到这两个基本矢量的作用时间如式3.14(314)通过上面的方法即可以确定基本矢量的作用时间,当需要合成的矢量位于各个不同的扇区时都存在如上的运算。通过对每个扇区基本矢量动作时间的求解不难发现它们都是一些基本时间的组合。所以给出几个基本的时间变量x,Y,Z。定义√(315)通过计算可以得到在每个扇区内的基本矢量动作时间,(由于五段和七段式的实现方法不同,所以这里没有考虑矢量的动作顺序,仅按照逆时针方向)。设每个刷区的两个基本矢量动作的时间为于是可以得到矢量动作时间表3,2表3.2的对应关系表扇区ⅣV在实际的应用中当给定的电压值太大时会出现过调制的情况,即+>。此情况出现时,还要对上述计算出来的电压矢量的作用时间进行调整,具体方法如式3.16所示。(316)即为调整后的动作时间。在一个P啊M周期内除了非零电压矢量的作用,还要有零电压矢量的作用,零电压矢量包括对于这两个矢量的作用时间,以及开关的动作顺序,取决于采用的SPwM是五段式还是七段式,3.3节将对这两种PWM形式进行详细的介绍3.4 SVPWM的硬件实现和软件实现TI公司的TM320LF2407A系列的DSP内部有硬件来实现 SVPWM,由于每个PWM周期被分为五段,因此也被称为五段式的 SVPWM。在每个PWM调制周期内,开关状态有五种,且关于周期中心对称。而七段式的SvPM在每个PWM调制周期内有七种开关状态,需要运用软件进行实现,因此也被称为 SVPWM的软件实现。需要注意的是,无论哪种方法,所遵循的基本原则是开关动作次数最少,每个开关在一个周期内最多动作两次。3.4.1五段式 SVPWM对于五段式的 SVPWM,只在PMM周期的中间插入零矢量,具体采用哪一个由硬件根据旋转方向和开关动作次数最少的原则自行决定。例如在第Ⅲ扇区内,如果旋转方向为逆时针时针,则先动作,后动作以此类推,动作时间可以直接采用表3.2中的数据即可,然后选择零矢量(硬件决定)即可使开关次数最少。对于五段式PWM而言,零矢量作用的时间可以表示为:根据上述的配置原则,在每个扇区内开关动作的示意图如图34所示202ⅣV/1Ⅵ图34每个扇区内的开关动作示意图每个TMS320LF2407A的事件管理器EV模块都具有十分简化的电压空间矢量PWM波形产生的硬件电路。编程时只需进行如下的配置2●设置 ACTRX寄存器用来定义比较输出引脚的输出方式,决定高电平还是低电平有效,正反转,所在扇区等。●设置COMC0Nx寄存器来使能比较操作和空间矢量PWM方式,并且把 CMPRX的重装条件设置为下溢●将通用定时器1或2,4或5设置成连续增/诚计数模式,并启动定时器。然后给据在两相静止(a6)坐标系下输入到电机的电压空间矢量,分解为,确定如下的参数●所期望的矢量所在的扇区。根据 SVPWM的调制周期计算出两个基本的空间矢量和零矢量作用的时间
- 2020-12-06下载
- 积分:1
电力系统电磁暂态计算理论
很好的电力系统电磁暂态计算方面的理论书籍,详细讲解了电力系统元件等值的方法,梯形积分、向前欧拉法、向后欧拉法都有介绍内容提要本祸结合国际上广泛使射的电砖街森计算程芹MTP,誊重舟绍电力和电气网终磁针态过程的计算机被的实用算法和援术,世括交直洸电力紧蛻和电气网络绽申机、变区器、鞫且线賡、电s、开关,可控硭、电抗器、避带器、电容器等各种线性贩非线性的集中參数与分布卖数元件,以及电力系统中赏的控剜系统的數竽型刷求溶方法。书中对坦磁暂薇模拟然說展势也提启了一些建设性的意见本书可件为电力、电气、电⊥制查、电气化铁路.通信等部门7工程技术人员扣科妍人的摻考书,也可作为大学高午学生和研究生汹H w DommelEMTP theory book内部出版物1986年电力统电磁暂态计算理论加拿大, w Dommel孪永庄林枭明曾喀华晖水刊电力出版社出版、发行〔北有三里惘路母各池新型书店经水利电力扑版社印刷厂印刷78?×19毫米1开本22,5张5千宁1991年8月第一版9年8月北京第一次即刷邛歎000L—2620朋rSBN了-2(-01337-8/TM37£价14元译序电力系统的规划,设计、运行,电机、电器设备的研都必须对电力网络进行研究,电网研究的内容通常有短跸分析瀏流分析;稳定分析;电磁背态分析。其中电磁智态分析是最新的也是最为复杂的课题。饼究电磁暂态问灯朋物理模型和效字程序。电磁晳态分析程序LM山}便是日前网际通用的一种数程序。它规模大,功能强,最初加拿大不列類哥伦比平大学(UBC)的H,W, DOmmel教授创立,又经过很多专家的共同努力而月橥完美。美国邦纳维尔电力局(BPA)对程序的开发作出了很大的贡献近年来成立的包括美国、加拿大、日本及欧洲一些国家在内的EMTP联合发展中心(DCG)和在欧洲成立的另一个EMTP用户协会(LEC),都还在为该程序的改进提和推广普及进行着量工作,本书中提到的UBC版本,BPA版本和DCG版本系指以上述机构各自为主开发的不同版本我国于1981年引进FMTP程序,很快受到有关部门的重视,从1984年以来各地举办过多次研讨班,水利电力部还成立了EMP工作组(设在能源部电力科学研兖陇系统所日前我函MTP程序的拥有单位已避及高等院校、科斫、设计,运行和制造部门。在一些国家级重点项目的研究中都已使用了EMTP程序。尽箐如此,由于BMTP程序理论较新难度较大,国内的使用者普遍感到不易掌握,凼而使程序的多种功能没有得到充分利用。以到MH莫基人且W. ommel教授为主编写的本书,全面地介绍了EMTP中涉及的电力系统中各种元件的数学莫型和数值计算方法,分析了它们的固有误差和特度,还介绍了积几十年应用线的些有益的经验及进一步改进的方问。它的出版无疑会对程序消化吸收奠定坚实的基础,不仅有助于大专院校帐师生、电丿部门和制造部门的技术人虽掌握程序,而且有勁于提高他们的电磁暂态理论水平及編程能力,此外,太书肪讨论的间题对通信、电气化铁路、自动控制等部门也有重要的参考价值。本书笫四、五章和6~6.11由曾跗华翮译,第6.1~6,5节、第12,2~12.4节、第八、九章和附录ⅴI由林集明翻译,其余部分由李永庄翻译。译者对清华大学吴维韩、黄炜纲、郝逢年为本书所作的校对工作深表感谢,并炊迎读者对译文中的不矩和错误时提出批评和意见,符号说明下标符号说明下标念义下标意义actual实际ITsy绝缘addy涡流ir.t内部的dIr值近似的Ink逆变上IE(u铝装铁E VE平基均k转cage础limit极折限3卫ch支路left边break闪络负载char特的o环:ont合常芯伴临数了ow低master主合界机路耗的城间中Indie模current电流nedi修的delay延迟互正相earth大地8卫铭牌eddy涡等negr值The电气侧neutral序点精确卫ew新性的eXcoffset偏fault故发障电地open分机Dreer接原high的高o振hys磁进OUE输出闸令始游外空部的oved架incr自增加Phasd慰应pipeput输入JOS正于序)的下标意义下标意义prem刺级50uc日电派propa传播apark放地random随机给定了tg额定值Lar乒〗rEC已受端start开始简化结束整流surger的 idual剩余的switc]五开关RMS有效值smr对称turbine汽(水〕轮机SCP屏酰端点elf自Thev戴维南等值ser]e:串联Pca总的整定值totality变压器外皮trape梯形的short短路tuleshunt并联不饱和滑多slave电业部门从属voltage电乐lope斜率without不包括平滑苓(序)的上标符号说明上析意义上标意义b攴鑒预报值闭合三角形连接r化别造厂s短路修正t试算neTT新值old电业部门老值录译序符号说明第一章EMT解法介绍…第二章线性无耦合集中参数元件了2.1电阻R…2,I,1误差分析…■■■p冒■■2,12带有电阻献网络实钢……………"……""¨¨¨=422自电感I…………"……■■山■昏■21误差分析222利用并联电卵阻尼数值振荡223并联电蓝的物理意义182.24营有电感的网络实好↓.■1}●唱.甲司日·d-:;■·Pt-…·20电容C2,3.1误差分析■山Ldk L2,3.2利用串联电阻阻尼数值振荡…2..3串联电阻的物理意义…2.3.4帮有电容的网络实例……1·量···52.4R、L、C串联…2.5单相常规z形电路…P■■■■"甲,胃26第三章线性耦合藻中参教元件3.1耩合电阻[E]…3,1.1误差分析28312耦合支路插入节点方程组…283.1,3朝合电阻:恻……"""……“…¨293.2耦合电感LL…….2.1误姜分析……■■■甲32.2利用荆合并联电阻阻尼数位振荡1r晋+■23.23荆合并电阻的物理意义■萨■司323,4带有精合电感的网绺实例……3.3藕合电容[C1……pm聊聊hdP量看看「·日···「·■n44"…,…-…343.3.1误差分析………是昏■·L甲·■·.●■35332利用串联电阻阻尼效值振满333稠合串联电阻的物理意义3.3.4背有耦合电容的网络实例…*……………-……………33.4M相常规匹形电路……………咖■自·d血■画3.4.I[配]与[L]申联………………342[配]与LL]1串联……………薯四章架空物电线路……41线路参数………………41单根导线的线蔚参数A i4.1.1.1串联阻抗矩库41,12并电容矩阵2等值相导线的线路念数|■?■■■自m画日q卩q即1412,1消去地线4.32,构成零级麻4.1.2,3等值打哥线的化矩阵4124等值相异线的常规忑形电路4125连续地线和分段地统4.1,3平衡线路的序和零序参数■■。■■PTPT·平P■■rr■■〓584lt单回三相线路的正序和零芹拿效4.132平衡的相线路的正序和零序参4.1.33仅有零序舞合的两条同的三相线路4.14对称分量……………,,……,…暴甲甲A.15模量参数-……一一·,1、5,1模域中的线路屴程4.1,5,2充與高频近4.1.5,3求習态解的近似转换矩阵4,2EMTP的线路模型421交流稳态觚…∷…7742.⊥1M榍常规x形电路2单相线路的等值x形电路M想等值形电路4.22眢态解4,221常规军形电路4222L和C恒定的单相无损线42,2.3D’和C恒疤的M群无封线2,4具有恒定多数的单相和M相元畸变浅4.2.25带集竹电图的单相和M相线略从有频率租关参藪的单相和M相线盛第五章地下电缆995.1单芯电缆…串联阻抗·512并联导纳……:"+∴:0352平行单芯电缆……1045.3大地返回阻抗…………r-…:106,3.1半无限大坦中的埋设导缋10753,2无限大地屮的埋设导线l4953.3架空导线……I】0.5,3,4架空导线与埋设导线间的互阻抗1i05.4管形电缆1195,L管壁厚度无限(无大地返旧)……11蠢2管撥厚度有限(有大地返回)…·I135.5戒束导线和消丢地线……………1146埋设的管道11p57部分导体和有限元法…1f857.I側分为部分导体…I185.7、2有限元法…*11958模量参数…………12059EM①P的电缆模型…12I5,9.I交流稳态解………⊥25.92皙态解………………………1225921短电须5922单相电5.9.23多相电抛算六章变压器4b■136.!戴维南等值电路中的变压器…………………………………………………1308.2单相双绕組和三绕组变压器的感矩阵模型…1…*:n……#1326.2双绕組变压器…………………………F吾P■r.3622荆态电感矩阵………336.23三绕组变居器………13463单相双绕组和三绕组变压器的逆电感矩阵模型…卩··PPP中血會■身P會↓4『『P』』■4』4卩134831双娆组变压器…”…t…134632三骁组变压器……“…4…,………,“………,t……3564单相N线圈变压器的矩阵棋型…13765三相N线圈变压器的矩阵模型如聊电4唱b血口血善t■■自44》备■晶↓14065.1许算[R]和[L]2方法……………………■·日中1平6,52簪正三角形连绕组的零序歡据…14266励磁电流……………436B.1线性(不饱和励磁电流■■贔PP■昏4■●●p■命;h…………………]4381,1单相变压器6,6,t,2三相变压器6.3.2饱和影啊……■■晶晶■昌■…4……………】47662,1单柑变压器6,6,2,2二桕变压器663磁°和涡流损粔…………………I506,B,4剩磁………1……15367朝变压器……d血■■db晶·■白d■■■■4p…15468理蕉变压器4斗P■由1鲁4■『■司司pP即"最最具4l5569电位浮动的三角接法………l56610支持子程序和饱和变压器元件6.【0.1支持子程序 XFORMER…………………,………………l575.102支持子程序 BCTRAN………+…1576.103支持子程炸 TRELEG唱1·甲严■冒14_l576.10,5支持子程序 CONVERTI58E105饱和变压器元件·.早日和·甲·1·如即自·冒P4晶4日h晶h晶qL■L■IBD611频率相关的变压器模型……183算七章简蝉电压源和电清漂…1個由:67L电源与节点相连卜日p卩●甲◆中卩申■■■自日………L637.2两节点问的电流源∵…………L6373两节太间的电压源…………………日加甲■唱·LpP■■■曲即啁,4同一节点上多个电源…L657.5内部简单电源巫数……………■1?b■■7.6受电流控制的直流电压源………………………1687,6,上狼态解…1697,6,2暂态解…h1口170第八章三相同步电机.血4甲即會■dt■tI…………17281电气部分基本方程式……",…"…"*…4……………17382确定电气参数r17783机椃部分基本方程式…I828.4稳态模和初始条件…………血11自幽冒bPIr■858.41利用序疯进行初始化M"……"……“*……l883.42利用负序值进行初始化………:+190843利零序值进行初始化193844机被部分的初始化…甲1日3,5皙态解………………+b幽…49485.1解法概述…鲁■「↓·■■甲司唱昏■4▲止l95852电气部分暂态解197启53机被部分暂态解2u185,4预报和校正方怯………………22B54预报和月8.54.24,q轴伴雅电阻的平均值85,43E和的预报8.5.4.4旋转势的预报8.5,1,5选代方法8.6饱和298,61基本股定……209862稳态运行中的饱和……………■■……:…21186.3态条件下的饱和21286,4在EMTP中的实现方法r214B6,4.1毪态初始化8642誓态解8.65采旧Cnay特征抗时饱和影响…■■■d■前九章通用电机………………"…"""42791电气部分基本方程式…!·■↓q昏【hdl●pp■■■暴27B2确定电气参数……甲·D·■自昏■面■备聊22B9.3转换到相量-………2229.4机械部分……………血自··■■着■P量1am山m+++··22495稳态模型和树始条件………·■P1『『1甲a●42259.1三相同步电机952两相同步电机…53单相同步电机中·!bd如h■,4甲唱啁中
- 2020-12-07下载
- 积分:1