登录
首页 » Others » Qt+FFMPEG+SDL实现的视频播放器

Qt+FFMPEG+SDL实现的视频播放器

于 2020-11-29 发布
0 120
下载积分: 1 下载次数: 1

代码说明:

Qt+FFMPEG+SDL实现的视频播放器包含源代码和可执行程序

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基于STM32室内温度报警控制系统设计
    基于STM32室内温度报警控制系统设计,STM32主控芯片,DS18B20温度传感器,PID控制算法,PWM电机调速,TFTGUI人机界面,此系统运行需要SD卡文件支持,所以请到本站的资源处需找SD卡文件资源免费下载
    2020-06-14下载
    积分:1
  • RS纠错码原理及其实现方法.pdf
    RS纠错编码原理及其实现方法。Zhengzhou Oriole Xinda Electronic Information Cc., Ltd前言随着越来越多的系统采用数字技术来实现,纠错编码技术也得到了越来越广泛的应用。RS码既可以纠正随机错误,又可以纠正突发错误,具有很强的纠错能力,在通信系统中应用广泛。近些年来,随着软件无线电技术的发展,RS编码、译码一般都在通用的硬件平台上实现。通常采用基于FPGA的ⅦHDL编码硬件实现,或者在DSP、单片机上用C和汇编编程软件实现。RS纠错编码涉及的领域很广,特别是设计到很多数学知识。这对那些对数学不太感冒的工程技术人员来书是个不小的挑战。尽管讲RS编码的书籍很多但是那些书都是采用循序渐进,逐步引人的方式从汉明码到循环码,从循环码到BCH码,BCH码再引入悶S码。对亍工程技术人员他们需要的是简明扼要的讲解,和详细的实现方法。本人写这篇文章的宗旨就是尽量最简单的语言最简短的篇幅来讲RS纠错编码原理,把重点来放在实现方法上。为了便于读者仿真,本文采样MLAB程序实现,程序尽量符合硬件C语言写法,读者经过简单修改即可应用到工程中去。本文读者对象本文是为那些初识瑙编码的学生、工程技术人员而写,并不适合做理论研究,如果你是纠错编码方面的学者、专家,那么本文并不适合你。由于作者水平有限,错误在所难免,恳请读者批评指正。不得更改陈文礼2008-01于郑州Zhengzhou Oriole Xinda Electronic Information Cc., Ltd必备的一些代数知识1、在纠错编码代数中,把以二进制数字表示的一个数据系列看成一个多项式。例如二进制数字序列1010111,可以表示成:M(x)=ax+a5x0+a5不5+a+4 TasK +ax+a,x+ank式中的x表示代码的位置,或某个二进制数位的位置,X前面的系数表示码的值。若a;是一位二进制代码,则取值是0或1。dM()称为信息代码多项式多项式次数称系数不为0的x的最高次数为多项式/(x)的次数,记为Of(x)2、域域在R编码理论中起着至关重要的作用。简单点说域GF(2)有2设2个符号[0,n,a2…22且具有以下性质域中的每个元素都可以用a",a,a2,om的和来表示。a←la为本原多项式p(x)的根。运算规则有:在纠错编码运算过程中,加减、乘和除的运算是在伽罗华域中进行。现以GF(2)域中运算为例:加法例:a+a=0010+0110101(模2加法相当于0005与011或减法运算与加法相同乘法例:a·a0=a(8+10)modl5除法例:cs/a0=a-2=a-2+5=a不理解没关系,下面的例子也许对你有帮助。例:mF=4,p(x)=x4+x+1求GF(2")的所有元素因为a为p(x)的根得到a4+a+1=0或a4=a+1(根据运算规则)Zhengzhou Oriole Xinda Electronic Information Cc., Ltd由此可以得到域的所有元素元素二进制对应十进制对应码值000000101000a+100l⊥0110a(a+1)=a+a(mod p(a))12a(a+a=a+a(mod p(a)1011a(a+l(modula))+a+1)10C(a+1=a+a(mod p(a )a(a23+a)a+I(mod p(a)1110a(a+a+D=aa+a(modp(a)tatI(mod p(a))11a(a3+a2+a+1)=a34a2+1(modp(a)1001a(a+a+1=a+l(mod p(a)a(a+1=l(mod(a))由此可以看岀本原多项式是求解域的全部元素的关键。读者也许会有这样的疑问我们如何得到p(x)呢?本原多城式p(x)的特性是2+得到的余式等于0O(X由于作者也是工程技术人员,具体怎么得到p(x),也没有深究过。Zhengzhou Oriole Xinda Electronic Information Cc., Ltd作者在设计RS编码时候都是根据 MATLAB指令rsgeηpoly来得到p(x)。其格式为 rsgenpoly(n,k)参数n为码长一般n=2"-1,k为信息码元个数。例如m4,码长n=15,信息码元长度为9GF(2)的本原多项式可以根据指令>>rsgenpoly(15, 9)得到ans= GF(2 4)array. Primitive polynomial =D 4+D+1 (19 decimal)有读者来信问:我要做一个(158的RS编码,在 MATLAB中输入命令 rsgenpoly(158,128),结果MAB报错Error using =- rsgenpolyN must equal 2m-1 for some integer m这里做一下解释我们S编码时普先要根据码长选取mλ选择原则是2若码长为6那么我们可以选择n=8, rsgenpey命令的第少个参数必须为2"-1,第二个参数司以随便选择只要小于2”-1就形了在此给出m∈(2,16)的所有本原多项式(m=2)P[m+1]={1,1,1}/米1+x+x3*/P[m+1]-{1,1,0,1}/米1+x+x4*/P[m11]={1,1,0,0,1}/米1+x2+x5*/P|m+1={1,0,1,0,0,1};Zhengzhou Oriole Xinda Electronic Information Cc., Ltd(m=6)/米1+x+x6*/P[m+1]={1,1,0,0,0,0,1}7)/来1+x3+x7*P[m+1]={1,0,0,1,0,0,0,1}(m=8)/米14x2+x31x4+x8*/P[m+1]-{1,0,1,1,1,0,0,0,1/*1+x4+x9半P[m1]={1,0,0,0,1,0,0,0,(m=10)/1+x3+x10*/P|m+1={1,0,0,1,0,0,0,0,/*1+x2+x11P[m+1]={1,0,0,0,0,0,0,1}(m=12)/*1+x+x4+x6+x12P[m+1]-{1,1,0,0,、1,0,0,(m=13)/*1+x+x^3+x4+x^13*/P[m+1]={1,1,0,1,1,0,0,00,0,1};(m=14)/*1+x+x6+x10+x14来P[m+1]={1,1,0,0,0,0,1,0,0,0,1,0,0,0,1}(m=15)/米14x+x15*/P[m+1]={1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1};(m=16)/*1+x+x3+x12+x16*/P[m+1]={1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1};Zhengzhou Oriole Xinda Electronic Information Cc., Ltd二、线性分组码的一些基本概念1、线性分组码一般用(n,)或(n,k,d)表示n为码长,k为信息码元的数目,n-k为监督码元的数目。d表示码元距离。定义:两个码组上对应位置上数字不同的个数称为码组的距离。发送的码字C=(1,C2C3,…C接收的矢量r=(,2,信道错误图样:e=c+r例如c=(1,1,0,0,0)(1,0,001)e=(1+1,1+0,0+0,0+0,0+1)(0,1,0,0,1)从而可以看出从左端起第2位和第5位是错误的2、校验矩阵概念码长为n,信息数为k,监督数为r。这样的一组码形式为:m:m2,P,P2Pm表示第个信息码,P表示第j个校验码各个校验码可从下列线性方程组求得hm+h2m2+…+n+1B1+012+0h2m1+2m2+…+h2m+0p1p20hmn+h,2m2+…+hm+O+0+…+1p,=0式中h;是常数校验方程组可写成校验矩阵100h21h2…,h2k010h000该矩阵具有r行和n列故式(1-1)可以写成c=0或c=08Zhengzhou Oriole Xinda Electronic Information Cc., LtdH矩阵称为[n,k,r码的校验矩阵。发送矢量为C接收矢量为F若rH≠0则说明接收到的码有错误。设错误图样为e则可写成以下关系式r=c+e为了纠错必须知道那些位上存在错误。这可由校正子(又称伴随式)s来确定s=rH=cH +eh=eh译码器的主要任务就是如何从中得到最像e的错误图样e从而译出c=r-e设第讠个是错误的因此e=(00..0第个有错误s=rH=(00…0、100000)00计算出的矢量示出i是出错误的位置。3、生成矩阵概念生成矩阵G,它是一个k行,n列的矩阵若已知信息组m,通过生存矩阵可求得相应的码字。c=mxG(m是k个信息元组成的信息组)这个应该比较容易理解,在此就不做过多解释。、RS码的一些重要性质1、RS码生成多项式:码长n=2”-1,监督元数目r=n-k=2t,能纠正t个错误。Zhengzhou Oriole Xinda Electronic Information Cc., Ltd定义:在(n,k,d)的RS码中,存在唯一的n-k次多项式g(x),使得每一个码多项式c(x)都是g(x)的倍式。g(x)称为n,k,d]RS码的生成多项式一般情况下g(x)=(x-a)(x-a2)…(x-a2)2、定理:在GF(2m)中,每个非0元素(1,a,a2…a22)均满足x2=1,反之x21-1=0的根必在GF(2")中。所以x-1=(x-a)(x-a)x3、RS码的校验多项式由于生成多项式g(x)是x-1的因式g(rh(g(x)为n-k次多项式,则h(x)为k次多项式,k3x+g)hx+…+x+4)由右式可以看出x"1,x2,x的系数均等于0即gg0010h1+g1bo=0g0h+g1h11+…+8nkh2(2k)=0∴.+n-kk-10n-kk式中g0+81h1+…+8nkh1(n=k)(表示X的系数10
    2020-12-08下载
    积分:1
  • BFSU PowerConc 1.0(通用型语料库检索软件包)
    BFSU PowerConc为一款基于Windows平台的绿色软件。
    2020-06-28下载
    积分:1
  • 运用Matlab录音识别过(附录源代码序)
    该系统能较好地进行语音的识别,同时,基于矢量量化技术 (VQ)的语音识别系统具有分类准确,存储数据少,实时响应速度快。
    2020-11-28下载
    积分:1
  • 阵列天线波束赋形研究
    【实例简介】阵列天线 波束赋形的研究与实现,可应用于LTE的波束成形
    2021-10-29 00:35:54下载
    积分:1
  • STM32F103VE_Sonic HC-SR04超声波模块
    STM32F103VE_Sonic HC-SR04超声波模块程序,具体测试方法可以看:http://blog.csdn.net/tcjy1000/article/details/70170058
    2020-12-05下载
    积分:1
  • 基于ofdm系统的qam软判决算法的研究与仿真
    一种基于ofdm系统的qam软判决算法的研究与仿真,可以适用于LTE系统。
    2020-12-01下载
    积分:1
  • 冒死上传公司车载设备源码 支持gps 音频 v4l2 视频
    模块思想 程序框架 高质量代码。界面与后台程序分离分层。 采用模块化思想封装装各个模块,除配置外只使用了个全局变量。含有gps,语音模块v4l2视频模块定时器线程
    2020-06-19下载
    积分:1
  • Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)
    在学习代数学之余,值得一看的代数学书籍。里面介绍了更为丰富的代数学概念和结论。PREFACEMy purpose in this book is to treat linear transformations on finite-dimensional vector spaces by the methods of more general theories. Theidea is to emphasize the simple geometric notions common to many partsof mathematics and its applications, and to do so in a language that givesaway the trade secrets and tells the student what is in the back of the mindsof people proving theorems about integral equations and Hilbert spaces.The reader does not, however, have to share my prejudiced motivationExcept for an occasional reference to undergraduate mathematics the bookis self-contained and may be read by anyone who is trying to get a feelingfor the linear problems usually discussed in courses on matrix theory orhigher"algebra. The algebraic, coordinate-free methods do not lose powerand elegance by specialization to a finite number of dimensions, and theyare, in my belief, as elementary as the classical coordinatized treatmentI originally intended this book to contain a theorem if and only if aninfinite-dimensional generalization of it already exists, The temptingeasiness of some essentially finite-dimensional notions and results washowever, irresistible, and in the final result my initial intentions are justbarely visible. They are most clearly seen in the emphasis, throughout, ongeneralizable methods instead of sharpest possible results. The reader maysometimes see some obvious way of shortening the proofs i give In suchcases the chances are that the infinite-dimensional analogue of the shorterproof is either much longer or else non-existent.A preliminary edition of the book (Annals of Mathematics Studies,Number 7, first published by the Princeton University Press in 1942)hasbeen circulating for several years. In addition to some minor changes instyle and in order, the difference between the preceding version and thisone is that the latter contains the following new material:(1) a brief dis-cussion of fields, and, in the treatment of vector spaces with inner productsspecial attention to the real case.(2)a definition of determinants ininvariant terms, via the theory of multilinear forms. 3 ExercisesThe exercises(well over three hundred of them) constitute the mostsignificant addition; I hope that they will be found useful by both studentPREFACEand teacher. There are two things about them the reader should knowFirst, if an exercise is neither imperative "prove that.., )nor interrogtive("is it true that...?" )but merely declarative, then it is intendedas a challenge. For such exercises the reader is asked to discover if theassertion is true or false, prove it if true and construct a counterexample iffalse, and, most important of all, discuss such alterations of hypothesis andconclusion as will make the true ones false and the false ones true. Secondthe exercises, whatever their grammatical form, are not always placed 8oas to make their very position a hint to their solution. Frequently exer-cises are stated as soon as the statement makes sense, quite a bit beforemachinery for a quick solution has been developed. A reader who tries(even unsuccessfully) to solve such a"misplaced"exercise is likely to ap-preciate and to understand the subsequent developments much better forhis attempt. Having in mind possible future editions of the book, I askthe reader to let me know about errors in the exercises, and to suggest im-provements and additions. (Needless to say, the same goes for the text.)None of the theorems and only very few of the exercises are my discovery;most of them are known to most working mathematicians, and have beenknown for a long time. Although i do not give a detailed list of my sources,I am nevertheless deeply aware of my indebtedness to the books and papersfrom which I learned and to the friends and strangers who, before andafter the publication of the first version, gave me much valuable encourage-ment and criticism. Iam particularly grateful to three men: J. L. Dooband arlen Brown, who read the entire manuscript of the first and thesecond version, respectively, and made many useful suggestions, andJohn von Neumann, who was one of the originators of the modern spiritand methods that I have tried to present and whose teaching was theinspiration for this bookP、R.HCONTENTS的 FAPTERPAGRI SPACESI. Fields, 1; 2. Vector spaces, 3; 3. Examples, 4;4. Comments, 55. Linear dependence, 7; 6. Linear combinations. 9: 7. Bases, 108. Dimension, 13; 9. Isomorphism, 14; 10. Subspaces, 16; 11. Calculus of subspaces, 17; 12. Dimension of a subspace, 18; 13. Dualspaces, 20; 14. Brackets, 21; 15. Dual bases, 23; 16. Reflexivity, 24;17. Annihilators, 26; 18. Direct sums, 28: 19. Dimension of a directsum, 30; 20. Dual of a direct sum, 31; 21. Qguotient spaces, 33;22. Dimension of a quotient space, 34; 23. Bilinear forms, 3524. Tensor products, 38; 25. Product bases, 40 26. Permutations41; 27. Cycles,44; 28. Parity, 46; 29. Multilinear forms, 4830. Alternating formB, 50; 31. Alternating forms of maximal degree,52II. TRANSFORMATIONS32. Linear transformations, 55; 33. Transformations as vectors, 5634. Products, 58; 35. Polynomials, 59 36. Inverses, 61; 37. Mat-rices, 64; 38. Matrices of transformations, 67; 39. Invariance,7l;40. Reducibility, 72 41. Projections, 73 42. Combinations of pro-jections, 74; 43. Projections and invariance, 76; 44. Adjoints, 78;45. Adjoints of projections, 80; 46. Change of basis, 82 47. Similarity, 84; 48. Quotient transformations, 87; 49. Range and null-space, 88; 50. Rank and nullity, 90; 51. Transformations of rankone, 92 52. Tensor products of transformations, 95; 53. Determinants, 98 54. Proper values, 102; 55. Multiplicity, 104; 56. Triangular form, 106; 57. Nilpotence, 109; 58. Jordan form. 112III ORTHOGONALITY11859. Inner products, 118; 60. Complex inner products, 120; 61. Innerproduct spaces, 121; 62 Orthogonality, 122; 63. Completeness, 124;64. Schwarz e inequality, 125; 65. Complete orthonormal sets, 127;CONTENTS66. Projection theorem, 129; 67. Linear functionals, 130; 68. P aren, gBCHAPTERtheses versus brackets, 13169. Natural isomorphisms, 138;70. Self-adjoint transformations, 135: 71. Polarization, 13872. Positive transformations, 139; 73. Isometries, 142; 74. Changeof orthonormal basis, 144; 75. Perpendicular projections, 14676. Combinations of perpendicular projections, 148; 77. Com-plexification, 150; 78. Characterization of spectra, 158; 79. Spec-ptral theorem, 155; 80. normal transformations, 159; 81. Orthogonaltransformations, 162; 82. Functions of transformations, 16583. Polar decomposition, 169; 84. Commutativity, 171; 85. Self-adjoint transformations of rank one, 172IV. ANALYSIS....17586. Convergence of vectors, 175; 87. Norm, 176; 88. Expressions forthe norm, 178; 89. bounds of a self-adjoint transformation, 17990. Minimax principle, 181; 91. Convergence of linear transformations, 182 92. Ergodic theorem, 184 98. Power series, 186APPENDIX. HILBERT SPACERECOMMENDED READING, 195INDEX OF TERMS, 197INDEX OF SYMBOLS, 200CHAPTER ISPACES§L. FieldsIn what follows we shall have occasion to use various classes of numbers(such as the class of all real numbers or the class of all complex numbers)Because we should not at this early stage commit ourselves to any specificclass, we shall adopt the dodge of referring to numbers as scalars. Thereader will not lose anything essential if he consistently interprets scalarsas real numbers or as complex numbers in the examples that we shallstudy both classes will occur. To be specific(and also in order to operateat the proper level of generality) we proceed to list all the general factsabout scalars that we shall need to assume(A)To every pair, a and B, of scalars there corresponds a scalar a+called the sum of a and B, in such a way that(1) addition is commutative,a+β=β+a,(2)addition is associative, a+(8+y)=(a+B)+y(3 there exists a unique scalar o(called zero)such that a+0= a forevery scalar a, and(4)to every scalar a there corresponds a unique scalar -a such that十(0(B)To every pair, a and B, of scalars there corresponds a scalar aBcalled the product of a and B, in such a way that(1)multiplication is commutative, aB pa(2)multiplication is associative, a(Br)=(aB)Y,( )there exists a unique non-zero scalar 1 (called one)such that al afor every scalar a, and(4)to every non-zero scalar a there corresponds a unique scalar a-1or-such that aaSPACES(C)Multiplication is distributive with respect to addition, a(a+n)If addition and multiplication are defined within some set of objectsscalars) so that the conditions(A),B), and (c)are satisfied, then thatset(together with the given operations) is called a field. Thus, for examplethe set Q of all rational numbers(with the ordinary definitions of sumand product)is a field, and the same is true of the set of all real numberaand the set e of all complex numbersHHXERCISIS1. Almost all the laws of elementary arithmetic are consequences of the axiomsdefining a field. Prove, in particular, that if 5 is field and if a, and y belongto 5. then the following relations hold80+a=ab )Ifa+B=a+r, then p=yca+(B-a)=B (Here B-a=B+(a)(d)a0=0 c=0.(For clarity or emphasis we sometimes use the dot to indi-cate multiplication.()(-a)(-p)(g).If aB=0, then either a=0 or B=0(or both).2.(a)Is the set of all positive integers a field? (In familiar systems, such as theintegers, we shall almost always use the ordinary operations of addition and multi-lication. On the rare occasions when we depart from this convention, we shallgive ample warningAs for "positive, "by that word we mean, here and elsewherein this book, "greater than or equal to zero If 0 is to be excluded, we shall say"strictly positive(b)What about the set of all integers?(c) Can the answers to these questiong be changed by re-defining addition ormultiplication (or both)?3. Let m be an integer, m2 2, and let Zm be the set of all positive integers lessthan m, zm=10, 1, .. m-1). If a and B are in Zmy let a +p be the leastpositive remainder obtained by dividing the(ordinary) sum of a and B by m, andproduct of a and B by m.(Example: if m= 12, then 3+11=2 and 3. 11=9)a) Prove that i is a field if and only if m is a prime.(b What is -1 in Z5?(c) What is囊izr?4. The example of Z, (where p is a prime)shows that not quite all the laws ofelementary arithmetic hold in fields; in Z2, for instance, 1 +1 =0. Prove thatif is a field, then either the result of repeatedly adding 1 to itself is always dif-ferent from 0, or else the first time that it is equal to0 occurs when the numberof summands is a prime. (The characteristic of the field s is defined to be 0 in thefirst case and the crucial prime in the second)SEC. 2VECTOR SPACES35. Let Q(v2)be the set of all real numbers of the form a+Bv2, wherea and B are rational.(a)Ie(√2) a field?(b )What if a and B are required to be integer?6.(a)Does the set of all polynomials with integer coefficients form a feld?(b)What if the coeficients are allowed to be real numbers?7: Let g be the set of all(ordered) pairs(a, b)of real numbers(a) If addition and multiplication are defined by(a月)+(,6)=(a+y,B+6)and(a,B)(Y,8)=(ary,B6),does s become a field?(b )If addition and multiplication are defined by(α,月)+⑦,b)=(a+%,B+6)daB)(,b)=(ay-6a6+的y),is g a field then?(c)What happens (in both the preceding cases)if we consider ordered pairs ofcomplex numbers instead?§2. Vector spaceWe come now to the basic concept of this book. For the definitionthat follows we assume that we are given a particular field s; the scalarsto be used are to be elements of gDEFINITION. A vector space is a set o of elements called vectors satisfyingthe following axiomsQ (A)To every pair, a and g, of vectors in u there corresponds vectora t y, called the aum of a and y, in such a way that(1)& ddition is commutative,x十y=y十a(2)addition is associative, t+(y+2)=(+y)+a(3)there exists in V a unique vector 0(called the origin) such thata t0=s for every vector and(4)to every vector r in U there corresponds a unique vector -rthat c+(-x)=o(B)To every pair, a and E, where a is a scalar and a is a vector in u,there corresponds a vector at in 0, called the product of a and a, in sucha way that(1)multiplication by scalars is associative, a(Bx)=aB)=, and(2 lz a s for every vector xSPACESSFC B(C)(1)Multiplication by scalars is distributive with respect to vectorddition, a(+y=a+ ag, and2)multiplication by vectors is distributive with respect to scalar ad-dition, (a B )r s ac+ Bc.These axioms are not claimed to be logically independent; they aremerely a convenient characterization of the objects we wish to study. Therelation between a vector space V and the underlying field s is usuallydescribed by saying that v is a vector space over 5. If S is the field Rof real number, u is called a real vector space; similarly if s is Q or if gise, we speak of rational vector spaces or complex vector space§3. ExamplesBefore discussing the implications of the axioms, we give some examplesWe shall refer to these examples over and over again, and we shall use thenotation established here throughout the rest of our work.(1) Let e(= e)be the set of all complex numbers; if we interpretr+y and az as ordinary complex numerical addition and multiplicatione becomes a complex vector space2)Let o be the set of all polynomials, with complex coeficients, in avariable t. To make into a complex vector space, we interpret vectoraddition and scalar multiplication as the ordinary addition of two poly-nomials and the multiplication of a polynomial by a complex numberthe origin in o is the polynomial identically zeroExample(1)is too simple and example (2)is too complicated to betypical of the main contents of this book. We give now another exampleof complex vector spaces which(as we shall see later)is general enough forall our purposes.3)Let en,n= 1, 2,. be the set of all n-tuples of complex numbers.Ix=(1,…,轨)andy=(m1,…,n) are elements of e, we write,,bdefinitionz+y=〔1+叽,…十物m)0=(0,…,0),-inIt is easy to verify that all parts of our axioms(a),(B), and (C),52, aresatisfied, so that en is a complex vector space; it will be called n-dimenaionalcomplex coordinate space
    2020-12-05下载
    积分:1
  • 有限元矩形网格剖分
    本程序采用MATLAB编写,可以自动进行矩形网格的剖分,以及图形的生成。
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载